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Abstract

The paper examines the robustness of the size and power properties of the stan-
dard non-linearity tests under different conditions such as moment failure and
asymmetry of innovations. Our results reveal the following. First, there seems
not to be a direct link between moment condition failure and the power variation
of non-linearity tests. Second, the power of the tests is very sensitive to asym-
metry of innovations compared to moment condition failure. Third, although
we evaluate 9 non-linear time series models using 8 standard non-linearity tests,
some non-linear models remain completely undetected.

1 Introduction

There exist many different non-linear time series models and related non-linearity tests

in the literature, see Tong (1990, Chapter 3 and 5) for details. However, there are only

few comprehensive studies comparing statistical properties of non-linearity tests, see

Luukkonen et al. (1988), Lee et al. (1993), de Lima (1997), or Psaradakis and Spagnolo

(2002). It is worth noting, however, that even these studies suffer from some of the
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following three limitations.

First, non-linearity tests are applied to time series models based on a particular fixed

parameter configuration. For instance, Lee et al. (1993, p. 277) consider the following

simple threshold autoregressive model given by

Yt = 0.9Yt−1I(|Yt−1| ≤ 1)− 0.3Yt−1I(|Yt−1| > 1) + at,

where I(·) is a standard indicator function taking 1 if |Yt−1| ≤ 1 and 0 otherwise, and

{at : t ∈ Z} is a sequence of NID(0,1) innovations. A problem is that a change in some

parameters of a non-linear model can generate a stochastic process with rather distinct

features. To make this point clear, we present three realizations of a simple threshold

autoregressive (TAR) model with different parameters, see Figure 1. It is quite clear

that realizations are completely different. So, there is no guarantee, at least theoreti-

cally, that all non-linearity tests work in the same way for all parameter configurations

of a given non-linear process. For this reason, the first part of this paper examines the

robustness of standard non-linearity tests against a parameter configuration.

Second, another problem is that the parameter specification in many research papers

do not even satisfy the basic moment conditions required by non-linearity tests. For

instance, Luukkonen et al. (1988, p. 170) use the following simple AR-ARCH model

given by

Yt = 0.6Yt−1 + εt,

εt = at

√
ht,

ht = 0.2 + 0.8ε2t−1,

where {at : t ∈ Z} is a sequence of NID(0,1) innovations. A problem is not in the

model itself, of course, but in a battery of non-linearity tests applied. Authors con-

sider, among other tests, the Tsay test, which requires the existence of the first four

moments, and the McLeod and Li test, which requires the existence of even the first

eight moments. It is not difficult to show that the above ARCH model does not satisfy

either of these two moment conditions. In this case, standard limiting distributions of

the above mentioned test statistics are no longer valid and testing non-linearity can lead

to misleading results. It would be a serious mistake to think of this particular example

as about an exception in the literature. Indeed, the opposite is true. In many other

papers, although the parameter specification formally satisfies moment conditions, pa-

rameters lie very close to or even on the boundary of the parameter space, and thus, do

not characterize the stochastic properties of a given process adequately. See Figure 2

for a few examples borrowed from the literature. Figures depict strict stationarity and
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4th-moment stationarity regions altogether with particular parameter configurations

for three well known non-linear time series models.

The main problem with moment condition failure of non-linearity tests is that we cannot

always derive an appropriate limiting distribution for a given test statistic. And even

if we could, many other statistical issues arise immediately. To make this point clear,

let us consider the following stochastic process with an infinite variance

Xt =
∞∑

j=−∞

ψjZt−j,

where {Zt : t ∈ Z} is a sequence of IID innovations whose distribution F has Pareto-like

tails with the tail index κ ∈ (1, 2). Although Adler et al. (1998) show that a standard

Box–Jenkins approach can be applied in general, a great deal of care needs to be ex-

ercised in individual modelling steps (e.g. identification, estimation, and diagnostic

checking). The reason for that can be easily demonstrated using a simple portman-

teau Q test originally developed by Box and Pierce (1970). Davis and Resnick (1986)

show that the estimated sample autocorrelations are not Op(T
−1/2) and their limiting

distribution is not Gaussian. In particular, they show that

ρ̂k − ρk = Op

([
T

log T

]−1/κ
)

= op(T
−1/β),

for any real β > κ, where ρk and ρ̂k denote theoretical and sample autocorrelations. It

means that the sample autocorrelations have slightly faster rate of convergence com-

pared to those estimated from a process with a finite variance. Provided we incorrectly

assume standard
√
T convergence (i.e. 2 = β > κ), then

√
T (ρ̂k − ρk)

d−→ 0, which

means that the limiting distribution of sample autocorrelations is degenerated. More-

over, the authors also show that even if we consider a correct normalizing constant, the

limiting distribution is given by(
T

log T

)1/κ

(ρ̂k − ρk)
d−→ Sk/S0,

for some integer k > 0, and Sk, S0 are two independent stable variables, see Corollary 1

in Davis and Resnick (1986, p. 553) for a complete proof. Based on the results above,

Runde (1997) derived the limiting distribution of the Box-Pierce Q test, which does

not converge to a χ2 distribution anymore, but to a rather complicate law given by

Q(m) =

(
T

log T

)2/κ m∑
k=1

ρ̂2
k

d−→ W, (1)
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for some integer m > 0 and W =
∑m

k=1(Sk/S0)
2, see Runde (1997, p. 207) for a proof.

Lin and McLeod (2008) confirm that in the case of an infinite variance process, the

χ2 distribution is not a good approximation for the Q test in standard sample sizes

available in practice. Another difficulty of this approach is that we have to find the

estimate of the tail exponent κ in (1). However, as shown by McCulloch (1997) and

Kearns and Pagan (1997), an accurate estimate of the tail index is rather difficult to

obtain in finite samples. It is also worth pointing out that the importance of the higher-

order sample autocorrelations in (1) increases in the case of infinite variance processes,

see Runde (1997, p. 208) for a discussion. This theoretical finding is confirmed in

Lin and McLeod (2008) based on Monte carlo experiments. Note also that it is not

quite clear, at least to our best knowledge, whether or not an automatic lag selection

procedure, proposed by Escanciano and Lobato (2009) and used to determined the lag

order of the Q tests, works also for infinite variance processes as well. As shown by

Davis and Mikosch (2000), the situation is even more peculiar for non-linear time series

models with an infinite variance. Authors show that the rate of convergence of the

sample autocorrelations of some non-linear models (e.g. a BL and ARCH model) is

actually slower than
√
T , and indeed the slower the heavier the tails. This is in the

complete opposite to linear ARMA models with an infinite variance. Unfortunately,

the results are not valid for all non-linear time series models in general. The authors

also demonstrate that the rate of convergence of the sample autocorrelation functions

of some non-linear models (e.g. a stochastic volatility model) is similar to that derived

for a linear ARMA process with an infinite variance. Rather surprisingly, the issue of

the robustness of the power properties of non-linearity tests against moment condition

failure has not attracted much attention in the literature.1 For this reason, the second

part of this paper addresses this issue in detail.

Third, another issue is that statistical properties of non-linearity tests in almost all

papers are examined using Gaussian innovations only. However, there is no reason to

assume that innovations of time series models are necessary Gaussian in general. In

addition, some non-linearity tests (e.g. the WHITE test) are directly derived based

on an assumption of Gaussian innovations. Therefore, it is important to check the

robustness of non-linearity tests against non-Gaussian innovations in date generating

processes (DGPs). Intuitively, the problem of non-Gaussian innovations is related es-

pecially to regime-switching models with endogenous switching (e.g. a TAR model),

where we can expect different allocation of observations into regimes, see Figure 3 for

an example. There is no paper focusing on this issue in the literature, at least to the

best of our knowledge. Therefore, the last part of this paper focuses on the robustness

of non-linearity tests against asymmetry of innovations.

1de Lima (1997) focuses on a size distortion of non-linearity tests under moment condition failure.

4



The main task of this chapter is to fill the gap in the literature and assess the robust-

ness of selected non-linearity tests to: (i) a parameter variation of the data generating

process; (ii) moment condition failure of innovations; (iii) asymmetry of innovations.

The following conclusions emerge from the results. First, the non-linearity tests con-

sidered in this chapter are all sensitive to the parameter configuration of DGPs. In

particular, the tests produce robust results about non-linearity testing only in less than

50 % of all cases. Second, there seems not to be a direct link between a power variation

of the tests and moment condition failure of model innovations. Third, and rather sur-

prisingly, a power variation of the tests is significantly higher in the case of asymmetric

innovations compared to innovations with moment failure.

The paper is organized as follows. In Section 2.2, eight the most frequently used non-

linearity tests are described. A brief description of nine non-linear time series models

and Monte Carlo setup is given in Section 2.3. All Monte Carlo results can be found

in Section 2.4.

2 Nonlinearity Tests

2.1 Null Hypothesis

In all cases discussed below, we assume that under the null hypothesis of linearity, the

sequence {Yt : t ∈ Z} is a realization from a simple AR(p) process given by

Yt = ξ0 + ξ1Yt−1 + · · ·+ ξpYt−p + at = ξ′Xt + at, (2)

where {at : t ∈ Z} is a sequence of IID(0,σ2) innovations, Xt = (1, Yt−1, . . . , Yt−p)
′

is a (p + 1 × 1) vector of predetermined variables and ξ = (ξ0, ξ1, . . . , ξp)
′ is a (p +

1 × 1) vector of unknown parameters. Moreover, we assume that all roots of ξ(z) =

1 −
∑q

i=1 ξiz
i polynomial lie outside the unit circle. It is worth noting that the null

hypothesis can be easily extended also to a linear ARMA model, or a model with other

explanatory variables. However, identification and filtration of ARMA models is a bit

more computationally expensive for Monte Carlo experiments. For this reason, we

consider only a simple AR(p) process. The lag order p is determined by an automatic

lag order selection procedure discussed in Ng and Perron (2005). Note that {ât} denotes

a sequence of estimated residuals from (2) and σ̂2 is the sample variance of residuals,

unless otherwise stated.
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Figure 1: Different realizations of a TAR model: N(0, 1) innovations
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Note: The series are generated from a simple TAR(2;1,1) model: Yt = φ1Yt−1I(Yt−1 > 0) +
φ2Yt−1I(Yt−1 ≤ 0) + at, where {at : t ∈ Z} is a sequence of NID(0,1) innovations. Particular model
parameters come from Petruccelli and Woolford (1984).
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Figure 2: Moment failure of non-linear models
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(b) GARCH model
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Note: “CLT (1995)” stands for Chen et al. (1995), “LST (1988)” denotes Luukkonen et al. (1988), and
“LWG (1993)” is Lee et al. (1993). Strict stationarity regions are calculated based on an assumption
that a ∼ N(0, 1), if necessary, whereas 4th-Moment regions represent an intersection of the 4-th
moment stationarity and/or invertibility conditions. Series are generated from the following list of
models: (a) a TAR(2;1,1) model: Yt = φ1Yt−1I(Yt−1 > 0)+φ2Yt−1I(Yt−1 ≤ 0)+at, (b) a GARCH(1,1)
model: Yt = at

√
ht = εt, ht = ω + αε2t−1 + βht−1, (c) a BL(1,0,1,1) model: Yt = φYt−1 + θat−1 +

ψYt−1at−1 + at. We assume that {at : t ∈ Z} is a sequence of NID(0,1) innovations in all models.
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Figure 3: Different realizations of a TAR model: asymmetric innovations
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Note: The series are generated from a simple TAR(2;1,1) model: Yt = φ1Yt−1I(Yt−1 > 0) +
φ2Yt−1I(Yt−1 ≤ 0) + at, where {at : t ∈ Z} is a sequence of IID innovations drawn from a GLD
family: the blue line corresponds to A2(+) specification (skewness = 1.5, kurtosis = 7.5), and the red
line to A2(−) specification (skewness = −1.5, kurtosis = 7.5), see Table 4 for details. Particular model
parameters come from Petruccelli and Woolford (1984).
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2.2 Non-linearity Tests

The size and power properties of eight of the most commonly used non-linearity tests

are examined in this chapter. In particular, we consider the following set of tests (the

moment condition required by each tests is declared in square brackets): the Brock–

Dechert–Scheinkman (BDS) test [2], the Mcloed–Li Q (MLQ) test [4], the Monti Q

(MQ) test [4], the Tsay (TSAY ) test [4], the smooth transition autoregressive (STAR)

test [6], the dynamic information matrix (WHITE) test [4], and the neural network

(NN) test [6]. The moment conditions are taken from de Lima (1997, p. 254).

2.2.1 Brock–Dechert–Scheinkman Test

Brock et al. (1996) developed a test statistic for assessing whether or not a time series

is identically and independently distributed. The test statistic is based on a correlation

sum defined as follows

C(n, ε) =
2

N(N − 1)

∑∑
1≤i<j≤N

Iε(â
n
i , â

n
j ),

where N = T − n+ 1, and the indicator function with n–history is given by

Iε(â
n
i , â

n
j ) = I(‖ân

i − ân
j ‖ < ε), for 1 ≤ i < j ≤ N,

where ‖ · ‖ stands for the sup-norm. The BDS test statistic is then defined as

BDS(n, ε) =
√
N

(
C(n, ε)− C(1, ε)n√

σ2(n, ε)

)
d−→ N(0, 1), (3)

where the standard deviation σ(n, ε) is estimated as follows

σ2(n, ε) = 4

[
Kn + 2

(
n−1∑
j=1

Kn−jC2j

)
+ (n− 1)2C2n − n2KC2n−2

]
,

where the quantity C and K are consistently estimated by

C =
1

T 2

T∑
i=1

T∑
j=1

Iε(âi, âj),

K =
1

T 3

T∑
i=1

T∑
j=1

T∑
k=1

Iε(âi, âj)Iε(âj, âk).

As pointed out by Hsieh (1989), there are two good reasons for preferring moderate

values of n: (a) the BDS test seems to be relatively insensitive on the parameter ε for

moderate values of the n–history; (b) for the moderate n–history, the standard normal

distribution is relatively a good asymptotic approximation. Brock et al. (1991) obtain

the maximum power of the test for ε = σ̂, the standard deviation of residuals from the

model in (2).
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2.2.2 McLeod–Li Test

McLeod and Li (1983) proposed a portmanteau test based on inspecting autocorrela-

tions of squared residuals. The test statistic is given by

MLQ(m) = T (T + 2)
m∑

j=1

ρ̂2
j

T − j

d−→ χ2(m), (4)

where T is the sample size, m is the lag order of the test, and ρ̂j is the j-th sample

correlation coefficient. The test statistic in this form requires the existence of the first

eight moments, which might be too difficult to satisfy in practice. Therefore, some

authors recommend to use autocorrelations based on absolute residuals given by

ρ̂j =

∑T
t=j+1(|ât| − σ̂)(|ât−j| − σ̂)∑T

t=1(|ât| − σ̂)2
, j ∈ {1, . . . ,m},

where ât is the estimated residual, σ̂ is the estimated standard error of residuals. The

advantage of using absolute residuals is that the test statistic requires the existence of

only the first four moments. It is worth noting that Q tests are sensitive on the lag

order specification m. For this reason, we implement the Q test with the lag order m

automatically selected by a procedure developed in Escanciano and Lobato (2009).

2.2.3 Monti Test

Monti (1994) proposed a portmanteau test based on inspecting partial autocorrelations

of the estimated residuals. It can be shown that the Monti Q test can be easily used for

inspecting the partial autocorrelation structure of squared and/or absolute residuals as

well. The test statistic is then given by

MQ(m) = T (T + 2)
m∑

j=1

π̂2
j

T − j

d−→ χ2(m), (5)

where T is the sample size, m is the lag order of the test, and π̂j is the jth sample

partial autocorrelation coefficient estimated from the Yule-Walker equations using the

above estimated autocorrelations ρ̂j for j ∈ {1, . . . ,m}. As in the case of the MLQ

test, the MQ test is sensitive on the lag order specification m as well. For this reason,

we run the test with the lag order m automatically selected by a procedure developed

in Escanciano and Lobato (2009).

2.2.4 Tsay Test

In order to improve the power of non-linearity tests developed by Keenan (1985) and

Ramsey (1969), Tsay (1986) proposed to use a different set of explanatory variables for

10



the test. The test is based on running an auxiliary equation in the form

ât = β′Zt + ut,

where Zt = vech(XtX
′
t) is a vector of predetermined variables, their squares and cross

products, and vech denotes a half-stacking operator. The LM version of the test statistic

is defined as

TSAY (p) = TR2 d−→ χ2(p(p+ 1)/2), (6)

where T denotes the sample size, and R2 is the coefficient of determination from an

auxiliary model. In a special case when p = 1, the TSAY is coincides with the KEEN

test proposed by Keenan (1985).

2.2.5 STAR Test

A STAR test is a test used for testing linearity against smooth transition autoregressive

models. The model can be written in the form as follows

Yt = φ′1Xt + φ′2XtG(X′
tθ, γ) + at,

where G(·) is the so called transition function, Xt = (1, Yt−1, . . . , Yt−p) is a (p+ 1× 1)

vector of predetermined variables, φ1, φ2, and θ are (p+1× 1) vectors of unknown pa-

rameters, γ is a smoothing constant. In order to get around the identification problem,

see Hansen (1996) for details, Luukkonen et al. (1988) proposed a testing procedure

based on an approximation of the transition function G(·) by a Taylor approximation.

Then, an auxiliary equation is given by

ât = α′Xt + Y′
tAYt + β′Zt + ut,

where Xt = (1, Yt−1, . . . , Yt−p) is a (p+ 1× 1) vector of predetermined variables, Yt =

(Yt−1, . . . , Yt−p) is a (p × 1) vector of predetermined variables, Zt = (Y 3
t−1, . . . , Y

3
t−p)

is a (p × 1) vector of powers of predetermined variables, α is a (p + 1 × 1) and β is

(p × 1) vector of real parameters, A is a (p × p) upper/lower diagonal matrix. The

main advantage of the Taylor approximation of a given transition function is that we

can apply directly the conventional LM-based test with asymptotic critical values. The

LM version of the test statistic is defined as

STAR(p) = TR2 d−→ χ2(p(p+ 1)/2 + p), (7)

where T denotes the sample size, and R2 is the coefficient of determination from the

auxiliary model.

11



2.2.6 White Dynamic Information Matrix Test

White (1987) proposed a specification test for time series models. The test is based

on the well known fact that for a correctly specified model, a score vector is serially

uncorrelated. Assuming Gaussian innovations in (2), the score vector st for an AR(p)

model can be written as follows

st =
∂lt(ω)

∂ω
=

1

σ
(utX

′
t, u

2
t − 1)′,

where lt(·) is the log-likelihood contribution, ω is (p+2×1) complete vector of unknown

parameters in the model: ω = (ξ′, σ)′ in our case, and ut = at/σ is a standardized error

term. Provided that a model is correctly specified, then it holds that E(st) = 0 and

E(sts
′
t−1) = 0. The test statistic is based on inspecting the relationship between ût and

Zt = Svec(ŝtŝ
′
t−1)/ût, where S is the selection matrix, and vec is a stacking operators

converting a matrix into a vector, and ût = ât/σ̂ is the standardized estimated residual

term. The test is based on running the following auxiliary equation

ût = X′
tβ + Z′

tγ + et,

where Xt = (1, Yt−1, . . . , Yt−p)
′ is a (p + 1 × 1) vector of predetermined variables, and

Zt is a (q × 1) vector of selected cross products and powers of the estimated score

vector elements ŝt. The test takes the form of a simple Lagrange multiplier test and

the relevant test statistic is given by

WHITE(q) = TR2 d−→ χ2(q), (8)

where T denotes a sample size, andR2 is a coefficient of determination from the auxiliary

model. Note that some authors use ad-hoc adjustment of the selection matrix S, see

Lee et al. (1993, p. 279). We do not follow this approach here and consider all the

elements from the score vector ŝt.

2.2.7 Neural Network Test

White (1989) proposed a neural network test for testing neglected non-linearity in time

series. The test is motivated by the fact that under the null hypothesis of linearity,

residuals from the model should be uncorrelated with any Ft−1–measurable function:

E(atψ(Ft−1)), where Ft is a Borel-sigma field generated by observation of Y up to and

including time t. Lee et al. (1993) approximate a vector of squashing functions ψ(Ft−1)

by a neural network method based on logistic cumulative distribution functions ψt =

(ψ1(X
′
tγ1), . . . , ψk(X

′
tγk))

′, where the individual squashing functions ψj are defined as

follows

ψj =
1

1 + exp(X′
tγj

)
, for j = 1, . . . , k.

12



In order to eliminate the identification problem, the authors recommend to use ran-

domly generated real-valued parameter vectors γj, for j = 1, . . . , k, from a uniform

distribution with support [−2, 2]. For computational reasons, the authors also use only

the first k∗ < k principal components (and exclude the first one) in order to avoid a

problem with collinearity in the model. The number of principal component is set to

k∗ = 2p. The test is based on running an auxiliary regression

ât = X′
tβ +ψ′

tδ + ut,

where the vector Xt = (1, Yt−1, . . . , Yt−p)
′ is a (p + 1 × 1) vector of predetermined

variables, and ψt is a (q × 1) vector. The test statistic takes the form a LM statistic

and is given by

NN(2p) = TR2 d−→ χ2(2p), (9)

where T denotes the sample size, and R2 is the coefficient of determination from the

auxiliary model.

Note that we do not consider the NN test modified for testing heteroscedasticity

since the test statistic relies on critical values obtained from bootstrap, see Blake and

Kapetanios (2003). This approach would be very computationally intensive in our case.

3 Time Series Models and Monte Carlo Setup

3.1 Time Series Models

The statistical properties of the selected non-linearity tests are examined using: (i) a

simple linear autoregressive (AR) model; (ii) the following non-linear time series mod-

els: a threshold autoregressive (TAR) model, an exponential autoregressive (EXPAR)

model, a mixture autoregressive (MAR) model, a Markov switching autoregressive

(MSAR) model, a generalized autoregressive conditional heteroscedasticity (GARCH)

model, a bilinear (BL) model, a random coefficient autoregressive (RCAR) model, a

non-linear moving average (NLMA) model, and finally, a threshold moving average

(TMA) model. Although the list of non-linear time series models is definitely not ex-

haustive, it includes some of the most commonly used non-linear time series models.

The models are summarized in Table 1.

3.2 Parameters and Innovations

The robustness of the power of the non-linearity tests is examined using different config-

urations of the key model parameters. In particular, we consider the following number

13



Table 1: List of non-linear models

M1: AR model:

Yt = c+ φYt−1 + σat

M2: TAR model:

Yt = (c1 + φ1Yt−1 + σ1at)I(Yt−1 ≤ 0) + (c2 + φ2Yt−1 + σ2at)I(Yt−1 > 0)

M3: EXPAR model:

Yt = c+ (φ1 + (φ2 − φ1) exp(−Y 2
t−1))Yt−1 + σat

M4: MAR model:

Yt = (c1 + φ1Yt−1 + σ1at)I(St = 1) + (c2 + φ2Yt−1 + σ2at)I(St = 2)

M5: MSAR model:

Yt = (c1 + φ1Yt−1 + σ1at)I(St = 1) + (c2 + φ2Yt−1 + σ2at)I(St = 2)

M6: GARCH model:

Yt = c+ φYt−1 + εt, εt = at

√
ht,

ht = ω + αε2t−1 + βht−1

M7: RCAR model:

Yt = c+ (φ+ ψut)Yt−1 + at

M8: TMA model:

Yt = c+ φ1at−1I(Yt−1 ≤ 0) + φ2at−1I(Yt−1 > 0) + σat

M9: BL model:

Yt = c+ φYt−1 + ψYt−1at−1 + σat

M10: NLMA model:

Yt = c+ φat−1 + ψatat−1 + σat
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of parameter configurations for individual time series models: K = 8 for an AR model,

K = 24 for TAR, EXPAR, MAR, MSAR, and TMA models, K = 12 for GARCH and

NLMA models, K = 18 for BL model and RCAR models, see Table 2 for particular

parameter configurations. Gaussian innovations are consider for all time series models

when inspecting the robustness of the power properties of the tests against parameter

configurations. Note that parameters of all non-linearity models are designed in such

a way to satisfy strict stationarity, 6th-moment stationarity and/or invertibility condi-

tions, if necessary, provided that model innovations are from a Gaussian distribution.

The only exception are S3, S4, S5, S6, A3 specifications of model innovations, for which

the 6th-moment stationarity is not satisfied. The parameter configurations satisfying

stationarity and 6th-moment stationarity and/or invertibility conditions, denoted as

“Monte Carlo”, are graphically depicted in Figure 4.

Afterwards, we examine the robustness of the selected non-linearity tests against mo-

ment condition failure and asymmetry of model innovations. The robustness against

moment condition failure is examined using a Student t distribution with different de-

grees of freedom controlling for the existence of moments. In particular, 6 different

specifications from t(3) to t(8) are considered, see Table 3 for details. The robustness

against asymmetry of innovations is examined using a generalized lambda distribution

(GLD), see Randles et al. (1980). This family provides a wide range of distributions

that are easily generated since they are defined in terms of the inverses of the cumu-

lative distribution functions: F−1(u) = λ1 + [uλ3 − (1 − u)λ4 ]/λ2, for 0 ≤ u ≤ 1. In

particular, we consider 6 specifications of asymmetric distributions, which differ in the

magnitude of asymmetry, see Table 4. All generated innovations are normalized to have

zero mean and unit variance.

3.3 Monte Carlo Setup

We simulate originally T+100 observations in each experiment but the first 100 of

them are discarded in order to eliminate the effect of initial observations. The number

of replications of all experiments is set to R = 1000. In all experiments, the generated

series is filtered by an AR(p) model where the lag order p is selected by the Bayesian

information criterion (BIC) developed by Schwarz (1978). Following the arguments in

Ng and Perron (2005), a modified version of the criterion is used. They show, based on

extensive Monte Carlo experiments, that the best method to give the correct lag order
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Table 2: Parameters of non-linear models

model parameters

AR, MA c = 1

σ2 = 1

φ ∈ {−0.8,−0.6,−0.4,−0.2, 0.2, 0.4, 0.6, 0.8}
θ ∈ {−0.8,−0.6,−0.4,−0.2, 0.2, 0.4, 0.6, 0.8}

TAR, EXPRA c1 = −0.25, c2 = 0.25 (for TAR only)

σ2
1 = 3, σ2

2 = 1 (for TAR only)

c = 1 (for EXPAR only)

σ2 = 1 (for EXPAR only)

(φ1, φ2) ∈



(−0.8,−0.8) (−0.8,−0.5) (−0.8,−0.2) (−0.8, 0.2) (−0.8, 0.5)

(−0.8, 0.8) (−0.5,−0.8) (−0.5,−0.5) (−0.5, 0.5) (−0.5, 0.8)

(−0.2,−0.8) (−0.2, 0.8) (0.2,−0.8) (0.2, 0.8) (0.5,−0.8)

(0.5,−0.5) (0.5, 0.5) (0.5, 0.8) (0.8,−0.8) (0.8,−0.5)

(0.8,−0.2) (0.8, 0.2) (0.8, 0.5) (0.8, 0.8)


MAR, MSAR c1 = −0.25, c2 = 0.25

σ2
1 = 3, σ2

2 = 1

p11 = 0.9, p22 = 0.7 (for MSAR only)

π = 0.5 (for MAR only)

(φ1, φ2) ∈



(−0.8,−0.8) (−0.8,−0.5) (−0.8,−0.2) (−0.8, 0.2) (−0.8, 0.5)

(−0.8, 0.8) (−0.5,−0.8) (−0.5,−0.5) (−0.5, 0.5) (−0.5, 0.8)

(−0.2,−0.8) (−0.2, 0.8) (0.2,−0.8) (0.2, 0.8) (0.5,−0.8)

(0.5,−0.5) (0.5, 0.5) (0.5, 0.8) (0.8,−0.8) (0.8,−0.5)

(0.8,−0.2) (0.8, 0.2) (0.8, 0.5) (0.8, 0.8)


GARCH c = 1

φ = 0.5

σ2 = 1

(α, β) ∈


(0.05, 0.2) (0.05, 0.3) (0.05, 0.4) (0.05, 0.5) (0.05, 0.6)

(0.05, 0.7) (0.05, 0.8) (0.05, 0.9) (0.10, 0.2) (0.10, 0.3)

(0.10, 0.4) (0.10, 0.5)


TMA c1 = −0.25, c2 = 0.25

σ2 = 1

(φ1, φ2) ∈



(−0.8,−0.8) (−0.8,−0.5) (−0.8,−0.2) (−0.8, 0.2) (−0.8, 0.5)

(−0.8, 0.8) (−0.5,−0.8) (−0.5,−0.5) (−0.5, 0.5) (−0.5, 0.8)

(−0.2,−0.8) (−0.2, 0.8) (0.2,−0.8) (0.2, 0.8) (0.5,−0.8)

(0.5,−0.5) (0.5, 0.5) (0.5, 0.8) (0.8,−0.8) (0.8,−0.5)

(0.8,−0.2) (0.8, 0.2) (0.8, 0.5) (0.8, 0.8)


BL, RCAR c = 1

σ2 = 1

(φ, ψ) ∈


(−0.8,−0.2) (−0.6,−0.2) (−0.4,−0.2) (−0.2,−0.2) (−0.2, 0.2)

(−0.4, 0.2) (−0.6, 0.2) (−0.6, 0.4) (−0.8, 0.2) (0.2,−0.2)

(0.2, 0.2) (0.4,−0.2) (0.4, 0.2) (0.6,−0.2) (0.6,−0.4)

(0.6, 0.2) (0.8,−0.2) (0.8, 0.2)


NLMA c = 1

σ2 = 4

(φ, ψ) ∈


(−0.20, 0.20) (−0.20, 0.40) (−0.40, 0.20) (−0.40, 0.40) (−0.60, 0.20)

(−0.60, 0.40) (0.20, 0.20) (0.20, 0.40) (0.40, 0.20) (0.40, 0.40)

(0.60, 0.20) (0.60, 0.40)
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Figure 4: Parameter configurations of time series models
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(f) BL(1,0,1,1)
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(h) TMA(2;1,1)
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Note: Strict stationarity regions are calculated based on an assumption that a ∼ N(0, 1), if necessary,
whereas Monte Carlo regions are calculated based on the intersection of the 6th-moment stationarity
and/or invertibility conditions for the following set of distributions of model innovations: N(0,1), S7,
S8, A1(+), A1(−), A2(+), and A2(−). All other distributions (e.g. S3, S4, S5, S6, A3(+), and A3(−))
are not considered since they do not implicitly satisfy the existence of the 6th-moment condition.
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Table 3: Parameters of a Student t distribution

dof skewness kurtosis momenta

S3 3 – – 2

S4 4 0.0 – 3

S5 5 0.0 9.0 4

S6 6 0.0 6.0 5

S7 7 0.0 5.0 6

S8 8 0.0 4.5 7

a The maximum exponent of a given distribu-
tion.

Table 4: Parameters of a generalized lambda distribution

λ1 λ2 λ3 λ4 skewness kurtosis momenta

A1(+) 0.00000 0.04306 -0.02521 -0.09403 0.9 4.2 10

A1(−) 0.00000 -0.04306 0.02521 0.09403 -0.9 4.2 10

A2(+) 0.00000 -1.00000 -0.00750 -0.03000 1.5 7.5 33

A2(−) 0.00000 1.00000 -0.00750 -0.03000 -1.5 7.5 33

A3(+) 0.00000 -1.00000 -0.10090 -0.18020 2.0 21.1 5

A3(−) 0.00000 1.00000 -0.10090 -0.18020 -2.0 21.1 5

a The maximum exponent of a given distribution.

Figure 5: Distributions of model innovations
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is that with the fixed efficient sample size. Therefore, our criterion is defined as follows

BICl = log(σ̂2
l ) +

l log(N)

N
,

σ̂2
l =

1

N

T∑
t=L+1

â2
lt,

where l ∈ {1, . . . , L}, and N = T − L is the efficient sample size, where T is the ac-

tual sample size and L is the maximum lag order constrained by L = [8(T/100)0.25].

Finally, the lag order p for AR(p) models is estimated by the following simple rule:

p̂ = minl∈{1,...,L}(BICl).

We also report two portmanteau tests, the MLQ and MQ tests, with the lag order

m determined by an optimal selection procedure developed by Escanciano and Lobato

(2009).2 The estimated lag order is selected by maximizing the following objective

function

Q∗
l = Ql − πl,

πl =


p log(N) if maxj∈{1,...,L} |ρ̂j| ≤

√
c log(N)/N,

2p if maxj∈{1,...,L} |ρ̂j| >
√
c log(N)/N,

where Ql is a value of the Q tests, πl is a penalization function, c = 2.4 is a correction

constant recommended by Escanciano and Lobato (2009) based on Monte Carlo exper-

iments. Finally, the lag order m for the Q tests is determined by the following simple

rule: m̂ = maxl∈{1,...,L}(Q
∗
l ).

4 Monte Carlo Results

4.1 Introduction

For a given test, a given data generating process (DGP), and a given distribution of

innovations, the average rejection frequency is calculated over all parameter configura-

tions as follows

avgj =
1

K

K∑
i=1

Pi,j, j ∈ {1, . . . , 13},

2Recall that a given procedure is proposed for a realization of some stochastic process and not a
filtered one. Our simulations show, however, that the procedure may be adopted for filtered processes
as well.

19



where Pi,j is the rejection frequency of the test for a given parameter configuration

i ∈ {1, . . . , K} and distribution of innovations j ∈ {1, . . . , 13}. The following set of 13

distributions of innovations is consider in this chapter: a Gaussian distribution indexed

as j = 1, six Student t distributions indexed from j = 2 to j = 7, and six asym-

metric distributions indexed from j = 8 to j = 13. Note that we adopt a convention

that j = 1 represents a standard normal distribution unless otherwise stated. The

number of parameter configurations vary across DGPs: K = 24 for a TAR, EXPAR,

MAR, MSAR, and TMA model, K = 12 for a GARCH and NLMA model, K = 18

for a BL model and RCAR model, see Table 2. The sample size is T ∈ {200, 500, 1000}.

The rejection frequency Pi,j is given by

Pi,j =
1

R

R∑
r=1

I(α̂r ≤ α), i ∈ {1, . . . , K}, j ∈ {1, . . . , 13},

where R denotes the number of repetitions, α = 0.05 is the nominal significance level,

and α̂ is the estimated p-value of the test. Variability of the size and power of the tests

against a parameter configuration of DGPs is assessed using a modified coefficient of

variation. For a given test, a given DGP, and Gaussian innovations, the coefficient of

variation is calculated as follows

cv =
maxi(Pi,1)−mini(Pi,1)

avg1

, (10)

where Pi,1 denotes the rejection frequency of a given ith parameter configuration based

on Gaussian innovations j = 1, avg1 represents the average rejection frequency calcu-

lated over all parameter K parameter configurations of a given DGP. The coefficient of

variation is denoted as cv(N) in tables below.

Variability of the size and power of the tests against moment condition failure and

asymmetry of innovations is assessed using the coefficient of variation as well. For a

given test, a given DGP, the coefficient of variation is defined as follows

cv =
maxj(avgj)−minj(avgj)

avg1

, (11)

where avg1 represents the average rejection frequency calculated based on Gaussian in-

novations over all parameter K parameter configurations of the DGP, whereas avgj de-

notes the average rejection frequency calculated based on jth distribution of innovations

over all parameter K parameter configurations of the DGP. Note that j ∈ {1, 2, . . . , 7}
when assessing the effect of moment condition failure using Student t distributions,

whereas j ∈ {1, 8, . . . , 13} when assessing the effect of asymmetry using GDL distri-

butions. The coefficient of variation is denoted as cv(S) and cv(A) for symmetric and

asymmetric innovations in tables below.
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4.2 Monte Carlo Results: Parameters

Size: The size results of the tests are presented in Table 7. The results reveal that

all non-linearity tests considered in the paper have the size close to the nominal level

α = 0.05. The BDS and WHITE tests are the only two tests suffering from a size

distortion: the BDS test is slightly oversized, whereas the WHITE test is undersized.3

The size results of the tests improve as the sample size T increases.

Power: The power results of the non-linear tests are presented in Table 8. The tests

can be split into two groups according to their power properties. The first group consists

of the BDS, MLQ and MQ tests, which all have a very good power for MAR, MSAR,

GARCH, and BL models. The second group contains the TSAY , STAR, WHITE,

and NN tests, which have a very good power for TAR, EXPAR, TMA, and BL mod-

els.4 It is interesting to mention that the first group of tests (i.e. the BDS and Q tests)

exhibits a very good power for regime-switching models with exogenous switching (i.e.

MAR or MSAR models), whereas the second group of tests (TSAY , STAR, WHITE,

and NN tests) are powerful especially for regime-switching models with endogenous

switching (i.e TAR or TMA model). It also worth noting that a BL model is easily

recognized by all non-linearity tests, whereas all the tests have a very low power against

a RCAR model, and no one from the tests exhibits power against a NLMA model.

Since both groups of tests exhibit a power for rather different types of non-linear time

series models, and since the properties of the tests are homogenous in each group, a

reasonable testing strategy seems to be to apply the test from each group.

Power variation: Although Monte Carlo results confirm that the selected non-linearity

tests can be useful, the average rejection frequencies reported in the tables do not tell us

much about the robustness of the tests against parameter configurations of DGPs. For

this reason, a simple coefficient of variation, calculated according to (10), is reported

in Table 8 as well. One can logically expect that the more powerful the test is, which

means the higher the average frequency, the lower the coefficient of variation. Our

results clearly show the expected relationship between the average rejection frequency

and its variation holds, and is insensitive to the sample size, but only for the average

rejection frequency exceeding 0.6, see Figure 6(a). Note, however, that even tests with

a very high average rejection frequency exceeding 0.9 can suffer from a relatively high

3Note that the fact that the BDS is slightly biased in small samples is well known, see Hsieh
(1989) for a discussion. The size results of the WHITE test in our paper are slightly more undersized
compared to those reported by Lee et al. (1993). From this we can conclude that the WHITE test is
sensitive on the specification of the selection matrix S.

4The only exception is the TSAY test, which does has a very low power against an EXPAR model.
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coefficient of variation close to 1, see see Figure 6(a). Unfortunately, no clear conclusion

can be make for the tests with the average rejection frequency less than 0.4. Our re-

sults clearly indicate that, although the selected non-linearity do exhibit power against

a given set of DGPs, the power results are very sensitive to the parameter specification

of DGPs.

In order to make this point clear, the individual Monte Carlo results are presented in

the form of graphical images. Each point depicted in the graphical images represents

the estimated p-value of a given non-linearity test for a given parameter configuration

(x-axis) and a given Monte Carlo replication (y-axis). Moreover, for better understand-

ing of the sensitivity results, we use a color range (from black to white) indicating

different magnitude of the statistical significance of the non-linearity tests, see Figure 7

and 8 for the case of Gaussian innovations. For example, from the results about a BL

model, it can be concluded that all estimated p-values of the TSAY , STAR, WHITE,

and NN tests are less then the significance level α = 0.05 and the results are not sen-

sitive to any parameter configuration of a BL model (see the black color of all images).

However, completely opposite results are obtained for a GARCH model, where almost

all the estimated p-values are much larger than the significance level α = 0.05, but

the results are not sensitive on the parameter configuration (see the orange color of all

images). These two outcomes, although completely opposite, are in favor of given test

statistics since they give us clear and reliable information about non-linearity testing.

In contrast, very problematic results are obtained using, for example, the BDS test for

a TMA model, where the results are extremely sensitive to the parameter configuration

of a TMA model (see annealing color of the image).

All in all, nine non-linear models are examined using a battery of eight standard non-

linearity test. The presented graphical images suggest that the power of the non-

linearity tests is robust (i.e. rejecting or not rejecting linearity) against DGP parameters

only in less than 50 % of the cases. Our results suggest that one should interpret the

results about non-linearity testing with caution, since linearity does not have to be

rejected only because of a particular parameter configuration of a purely non-linear

process.

4.3 Monte Carlo Results: Moments and Asymmetry

The power results of the tests based on moment condition failure and asymmetry of

innovations are presented in Tables 9 – 24. For better understanding of the Monte Carlo

results in this section, the highest existing moment of model innovations is indicated by

a color legend in tables bellow: a dark grey legend indicates moment condition failure
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for a given test, a light dark legend indicates that moment condition is exactly satisfied

for a given test, whereas no-color legend indicates that the lowest existing moment of

a given distribution is even higher than a given test statistic requires.

Moment condition failure: Our results suggest that the power variation of the

non-linearity tests is extremely model rather than test dependent. For example, the

BDS test, although it requires the existence of only the second moment of estimated

residuals, suffers from high variability of the average rejection frequency even if the sec-

ond moment is satisfied: the average rejection frequency of the BDS based on Gaussian

innovations for a BL model in the small sample T = 200 is approximately 0.47, whereas

the same average rejection frequency is 0.83 for Student t(3) innovations, see the top

panel in Table 9. Very similar results can be found for other non-linearity tests and time

series models. However, as in the previous case, it can be concluded that very powerful

tests are usually less sensitive to moment condition failure. For example, the NN test,

requiring the existence of the first six moments, exhibits almost no power variation

(i.e. the coefficient of variation is close to zero regardless the sample size) for some

specific models such as TAR, EXPAR, TMA, MSAR, and BL models, but extremely

large variation for MAR, GARCH or RCA models, see the last column in Table 16 for

details. Similar results can be also observed for the Q tests. For instance, the MLQ

test exhibit very small power variation (i.e. the coefficients of variation are close to 0

regardless the sample size) for MAR, MSAR, and GARCH models, but large variation

for TMA and NLMA models, see the last column in Table 10. Figure 6(b) depicts the

relationship between the average rejection frequency of the tests based on Gaussian

innovations (“avg1”) and the coefficients of variation under moment condition failure

(“cv(S)”). The figure clearly reveals that the relationship between the power and its

variability due to moment condition failure is significantly non-linear. The power vari-

ation is significantly reduced, and can be considered as a minor problem, provided that

the average rejection frequency exceeds 0.6. On the other hand, the power variation

can take extremely high values when the power of the test is relatively small, say less

than 0.2.

In order to make correct inference about the robustness of the non-linearity tests against

different specifications of distributions of model innovations, we formally test a set of

hypothesis. The null hypotheses are as follows: (i) the average rejection frequency

from a particular non-Gaussian distribution (i.e. avgj for j ∈ {2, . . . , 13}), equals

to the Gaussian counterpart (i.e. avg1) for each time series model and non-linearity

test considered in the paper: H0 : avgj = avg1 against H1 : avgj 6= avg1; (ii) the

average rejection frequency from a particular non-Gaussian distribution (i.e. avgj for

j ∈ {2, . . . , 13}), significantly exceeds the Gaussian counterpart (i.e. avg1) for each time
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Figure 6: Power variation of the tests
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series model and non-linearity test considered in the paper: H0 : avgj > avg1 against

H1 : avgj ≤ avg1; (iii) the average rejection frequency from a particular non-Gaussian

distribution (i.e. avgj for j ∈ {2, . . . , 13}), is significantly less than the Gaussian coun-

terpart (i.e. avg1) for each time series model and non-linearity test considered in the

paper: H0 : avgj < avg1 against H1 : avgj ≥ avg1. Since the hypothesis is about two

average rejection frequencies, it means sample averages of Bernoulli random variables,

we can use a Normal approximation to a Binomial distribution and apply a simple

t-test for testing the null hypothesis, see Casella and Berger (2001, p. 105) for details.5

We consider a significance level of the test α = 0.05. Since we consider nine non-linear

time series models, see Table 2, and six specifications from a Student t distribution, see

Table 3, and also six specifications from a generalized lambda distribution, see Table 4,

we obtain two sets of 54 results about the null hypothesis for each non-linear test.

Therefore, the rejection frequencies of the null hypothesis for each non-linearity test is

reported in Table 5.

The results indicate that there seems not to be a clear cut off between the moment

requirement of a given test and the robustness of its power against either moment

condition failure or asymmetry of innovations. For example, the null hypothesis about

no change (i.e. H0 : avgj = avg1) is rejected in 33 % for the NN test, which requires

the existence of the sixth moment, but in 57 % for the BDS test, which requires the

existence of only the second moment. Some other tests, especially the Q tests, do suffer

from even higher power variability in general. For example, the null hypothesis about

no change (i.e. H0 : avgj = avg1) is rejected in 78 % for the MLQ test, which requires

the existence of the forth moment. Moreover, the results clearly confirm that the power

of the tests under moment condition failure of model innovations is inflated upwards.

Much more interesting results are obtained from the robustness of the non-linearity

tests against asymmetry of innovations. The results are presented in the bottom panel

of Table 5. The results indicate that the average rejection frequencies of the tests based

on asymmetric innovations suffer from even a higher variation compared to moment

condition failure. The only exception is the STAR and WHITE tests with almost

identical results. The highest sensitivity is observed, rather surprisingly, for the Q tests

where the null hypothesis about no change in the power (i.e. H0 : avgj = avg1) is

rejected in 87 % of all cases. As in the case of moment condition failure, the results

confirm that the average rejection frequencies of the tests are statistically significantly

inflated upward in the case of asymmetric innovations.

5Moreover, since we the number of replications of each experiment is set to R = 1000, we do not
have to consider any “continuity” correction of a Normal approximation.
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Table 5: Summary of power results: T = 1000

Frequency of rejection of the null

Hypothesis H0 BDS MLQ MQ KEEN TSAY STAR WHITE NN

moment

H0 : avgj = avg1 0.57 0.78 0.74 0.48 0.57 0.61 0.57 0.33

H0 : avgj > avg1 0.00 0.11 0.07 0.06 0.11 0.15 0.11 0.17

H0 : avgj < avg1 0.65 0.80 0.78 0.46 0.46 0.52 0.46 0.28

asymmetry

H0 : avgj = avg1 0.78 0.87 0.87 0.80 0.76 0.57 0.57 0.56

H0 : avgj > avg1 0.11 0.09 0.09 0.26 0.17 0.22 0.22 0.20

H0 : avgj < avg1 0.70 0.81 0.80 0.57 0.59 0.46 0.39 0.37

* Note that j ∈ {2, . . . , 7} for moment condition failure, whereas j ∈ {8, . . . , 13} for asymmetry
of innovations.

5 Summary and Conclusion

In this chapter, we have examined the size and power properties of the standard non-

linearity tests against: (a) various parameter configurations of DGPs; (b) moment

condition failure of innovations; and (c) asymmetry of innovations. The aim of this

section is to summarize the results and offer some conclusions.

The easiest way to compare the selected non-linearity tests is to order them according

to their performance under different conditions: (a) the average rejection frequency,

(b) robustness of the power against a parameter configuration of DGPs; (c) against

moment condition failure of innovations; (d) against asymmetry of innovations. Since

eight non-linearity tests are evaluated, “1” denotes the best performance, whereas “8”

the worst performance. Detailed results about the performance of the tests are pre-

sented in Table 25. For example, when considering the average rejection frequency of

the tests itself, the results indicate that the BDS test is the most powerful test statistic

for a MAR model (“1”), whereas the NN test does exhibit the lowest power across all

8 non-linearity tests (“8”) for a MAR model. The same system of ordering is applied

when evaluating the robustness of the tests against a parameter configuration, moment

condition failure, and asymmetry of innovations. For example, when evaluating the ro-

bustness of the tests against asymmetry of innovations, the results show that the BDS

test performs very badly for a TAR model (“8”), whereas the NN test does perform

best in this case (“1”). Aggregated results, based on the median ordering of the results

over all time series models under consideration, are presented in Table 6. The main

reason for using the median ordering is in the robustness of the results against outliers.
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That means, our approach penalizes tests, which perform very well for one particular

time series model but completely fail for some other(s).6

Table 6: Median ordering of non-linearity test: T = 1000

median ordering

avg1 cv(N) cv(S) cv(A)

BDS 1 6 1 6

MLQ 3 6 5 6

MQ 4 7 6 5

KEEN 6 5 5 5

TSAY 5 4 7 4

STAR 4 4 5 2

WHITE 4 5 4 3

NN 5 3 3 3

* “avg1” stands for the average rejection fre-
quency of the non-linearity tests based on
Gaussian (N) innovations, “cv(N)” stands
for the coefficient of variation calculated over
all parameter configurations of a given non-
linear model using Gaussian (N) innovations,
“cv(S)” stands for a coefficient of variation of
a given test statistic over all symmetric (S)
innovations, “cv(A)” stands for a coefficient
of variation of a given test statistic over all
asymmetric (A) innovations.

The results reveal that the best non-linearity tests with the highest average rejection

frequency across all nine non-linear time series models are the BDS, MLQ tests. On

the other hand, the worst test, having the lowest average rejection frequency, is the

KEEN test. It is interesting to note that the overall performance of simple Q tests is

better than much more sophisticated non-linearity tests such as the WHITE or NN

tests. On the other hand, the Monte Carlo results reveal that more powerful tests suffer

from high variability of the power. A nice example is related to the BDS test, which is

the most powerful test for a given set of non-linear models, but the test also suffers from

one of the highest power variation. The ordering of the non-linearity tests according to

moment failure and asymmetry of innovations gives rather different results. In the case

of moment failure, the lowest variability of the power is obtained for the BDS, NN ,

WHITE and MQ tests. The worst test, suffering from the highest power variation,

6Another advantage of median ordering is that the results are not affected by rounding, which is
not the case when using average ordering.
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seems to be the TSAY test. On the other hand, in the case of asymmetric innovations,

the lowest variability of the power is obtained for the STAR, WHITE, and NN tests.

The worst test, suffering from the highest power variation, seems to be the BDS test.

All in all, since we face a problem of heavy-tailed time series rather than asymmetric

ones in economics and finance, we put subjective priority to the results from a symmetric

Student t distribution compared to asymmetric innovations. Based on this decision, the

best tests, according to their power and its variability, are the following: the BDS, NN ,

followed by MLQ and STAR tests.
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Table 7: Size of the non-linearity tests: AR (#8), N(0,1) innovations

T=200 T=500 T=1000
avg cv(N) avg cv(N) avg cv(N)

BDS(n) 0.08 0.34 0.06 0.27 0.06 0.33
MLQ(m) 0.06 0.35 0.06 0.36 0.06 0.29
MQ(m) 0.06 0.38 0.06 0.35 0.06 0.29
KEENAN 0.04 0.66 0.05 0.45 0.05 0.40
TSAY(p) 0.04 0.63 0.05 0.48 0.05 0.39
STAR(p) 0.04 0.49 0.05 0.28 0.05 0.46
WHITE(p) 0.02 0.42 0.02 0.74 0.02 0.48
NN(p) 0.05 0.51 0.05 0.28 0.05 0.42
a The lag order p of an AR process is determined by an optimal

lag order selection procedure discussed in Ng and Perron (2005).
The n–history of BDS test is set n = 2 for T = 200, n = 3 for
T = 500, and n = 4 for T = 1000. The lag order m of the Q
tests is determined by an optimal selection procedure developed
by Escanciano and Lobato (2009).

b “AR (#8)” indicates that we evaluate K = 8 different parame-
ter configurations of an AR model.

c “avg” denotes the average rejection frequency calculated over all
parameter configurations of a given DGP, “cv(N)” represents
a coefficient of variation calculated from individual rejection
frequencies. The significance level is set to α = 0.05.
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Table 8: Power of the non-linearity tests: N(0,1) innovations

TAR (#24) EXPAR (#24) MAR (#24) MSAR (#24) GARCH (#12) TMA (#24) BL (#18) RCAR (#18) NLMA (#12)
T=200 avg cv(N) avg cv(N) avg cv(N) avg cv(N) avg cv(N) avg cv(N) avg cv(N) avg cv(N) avg cv(N)
BDS 0.35 2.31 0.10 0.74 0.55 1.71 0.59 1.38 0.17 0.90 0.23 2.29 0.47 1.35 0.15 2.27 0.09 0.39
MLQ(m) 0.22 3.17 0.07 0.33 0.51 1.84 0.53 1.61 0.14 0.98 0.10 1.85 0.28 2.24 0.12 2.53 0.07 0.45
MQ(m) 0.22 3.33 0.06 0.50 0.51 1.86 0.51 1.65 0.13 0.96 0.09 1.75 0.27 2.26 0.11 2.55 0.07 0.45
KEENAN 0.50 1.76 0.06 2.81 0.13 1.90 0.15 1.69 0.06 0.57 0.47 1.94 0.79 0.90 0.08 2.04 0.05 0.61
TSAY(p) 0.53 1.76 0.06 2.84 0.14 1.92 0.24 1.83 0.06 0.61 0.56 1.74 0.90 0.22 0.08 2.01 0.05 0.47
STAR(p) 0.60 1.52 0.27 2.49 0.19 2.13 0.32 1.71 0.07 0.53 0.54 1.79 0.89 0.23 0.10 2.06 0.05 0.61
WHITE(p) 0.43 2.04 0.13 3.22 0.16 3.18 0.33 2.09 0.04 0.92 0.46 2.05 0.84 0.31 0.05 3.11 0.02 0.88
NN(p) 0.60 1.38 0.44 2.04 0.10 1.49 0.26 1.69 0.06 0.48 0.51 1.78 0.81 0.45 0.07 1.61 0.05 0.44

TAR (#24) EXPAR (#24) MAR (#24) MSAR (#24) GARCH (#12) TMA (#24) BL (#18) RCAR (#18) NLMA (#12)
T=500 avg cv(N) avg cv(N) avg cv(N) avg cv(N) avg cv(N) avg cv(N) avg cv(N) avg cv(N) avg cv(N)
BDS 0.53 1.71 0.09 1.40 0.63 1.52 0.76 0.93 0.27 1.10 0.38 2.34 0.76 0.45 0.21 3.19 0.07 0.53
MLQ(m) 0.36 2.59 0.06 0.60 0.60 1.58 0.72 1.08 0.26 1.20 0.16 2.65 0.52 1.28 0.19 3.35 0.06 0.46
MQ(m) 0.34 2.71 0.06 0.52 0.60 1.58 0.71 1.13 0.24 1.20 0.16 2.69 0.51 1.35 0.18 3.40 0.06 0.46
KEENAN 0.65 1.42 0.07 2.96 0.15 1.80 0.17 2.02 0.07 0.58 0.51 1.82 0.87 0.86 0.10 2.08 0.05 0.37
TSAY(p) 0.70 1.37 0.07 2.99 0.16 1.90 0.35 1.67 0.07 0.58 0.69 1.42 1.00 0.04 0.10 2.08 0.06 0.44
STAR(p) 0.77 1.13 0.50 1.89 0.22 2.03 0.46 1.59 0.08 0.68 0.71 1.39 1.00 0.02 0.12 2.29 0.06 0.52
WHITE(p) 0.66 1.42 0.36 2.51 0.21 2.93 0.54 1.56 0.06 0.92 0.67 1.46 1.00 0.01 0.07 3.29 0.04 0.95
NN(p) 0.80 0.87 0.64 1.47 0.11 1.29 0.45 1.58 0.07 0.59 0.62 1.50 0.98 0.16 0.08 1.84 0.05 0.44

TAR (#24) EXPAR (#24) MAR (#24) MSAR (#24) GARCH (#12) TMA (#24) BL (#18) RCAR (#18) NLMA (#12)
T=1000 avg cv(N) avg cv(N) avg cv(N) avg cv(N) avg cv(N) avg cv(N) avg cv(N) avg cv(N) avg cv(N)
BDS 0.68 1.34 0.10 2.69 0.68 1.41 0.86 0.58 0.44 1.11 0.49 1.94 0.96 0.08 0.29 2.79 0.07 0.58
MLQ(m) 0.45 2.05 0.06 1.13 0.65 1.46 0.84 0.74 0.44 1.23 0.26 2.81 0.76 0.50 0.26 3.11 0.06 0.36
MQ(m) 0.44 2.12 0.06 0.97 0.65 1.46 0.82 0.79 0.42 1.24 0.25 2.81 0.75 0.52 0.25 3.20 0.06 0.36
KEENAN 0.70 1.32 0.07 2.84 0.16 1.65 0.20 2.47 0.08 0.67 0.52 1.80 0.85 0.91 0.10 1.99 0.06 0.51
TSAY(p) 0.78 1.21 0.07 2.88 0.16 1.72 0.46 1.47 0.08 0.69 0.76 1.29 1.00 0.01 0.11 1.99 0.06 0.55
STAR(p) 0.86 0.78 0.62 1.55 0.24 1.97 0.59 1.34 0.09 0.57 0.78 1.25 1.00 0.00 0.14 2.40 0.06 0.71
WHITE(p) 0.77 1.15 0.52 1.87 0.24 2.77 0.67 1.29 0.07 0.85 0.77 1.24 1.00 0.00 0.08 3.74 0.05 1.13
NN(p) 0.92 0.42 0.71 1.36 0.12 1.39 0.60 1.40 0.08 0.44 0.66 1.40 0.99 0.10 0.09 1.93 0.05 0.53
a The lag order p of an AR process is determined by an optimal lag order selection procedure discussed in Ng and Perron (2005). The n–history of BDS test is set n = 2 for T = 200, n = 3 for
T = 500, and n = 4 for T = 1000. The lag order m of the Q tests is determined by an optimal selection procedure developed by Escanciano and Lobato (2009).

b “TAR (#24)” indicates that we evaluate K = 24 different parameter configurations of a TAR model.
c “avg” denotes the average rejection frequency calculated over all parameter configurations of a given DGP, “cv(N)” represents a coefficient of variation calculated from individual rejection

frequencies. The significance level is set to α = 0.05.



Table 9: Power properties: BDS test

T=200 S3 S4 S5 S6 S7 S8 N cv(S)
AR (#8) 0.07 0.07 0.07 0.07 0.07 0.08 0.08 0.18
TAR (#24) 0.42 0.39 0.37 0.36 0.36 0.35 0.35 0.20
EXPAR (#24) 0.14 0.11 0.10 0.10 0.10 0.10 0.10 0.46
MAR (#24) 0.62 0.59 0.58 0.57 0.57 0.57 0.55 0.14
MSAR (#24) 0.62 0.61 0.60 0.59 0.59 0.60 0.59 0.05
GARCH (#12) 0.16 0.15 0.15 0.15 0.15 0.16 0.17 0.08
TMA (#24) 0.45 0.38 0.34 0.32 0.30 0.29 0.23 0.96
BL (#18) 0.83 0.76 0.70 0.66 0.63 0.61 0.47 0.77
RCA (#18) 0.22 0.18 0.17 0.16 0.15 0.15 0.15 0.49
NLMA (#12) 0.09 0.08 0.09 0.08 0.09 0.09 0.09 0.12

T=500 S3 S4 S5 S6 S7 S8 N cv(S)
AR (#8) 0.06 0.06 0.05 0.06 0.06 0.06 0.06 0.16
TAR (#24) 0.64 0.61 0.59 0.58 0.57 0.58 0.53 0.21
EXPAR (#24) 0.20 0.13 0.11 0.10 0.09 0.10 0.09 1.29
MAR (#24) 0.70 0.67 0.66 0.65 0.65 0.65 0.63 0.12
MSAR (#24) 0.77 0.76 0.76 0.76 0.76 0.77 0.76 0.02
GARCH (#12) 0.29 0.29 0.29 0.30 0.30 0.30 0.27 0.13
TMA (#24) 0.60 0.53 0.50 0.47 0.45 0.44 0.38 0.59
BL (#18) 0.98 0.96 0.94 0.92 0.90 0.88 0.76 0.29
RCA (#18) 0.38 0.31 0.28 0.26 0.25 0.25 0.21 0.83
NLMA (#12) 0.06 0.06 0.06 0.07 0.07 0.07 0.07 0.13

T=1000 S3 S4 S5 S6 S7 S8 N cv(S)
AR (#8) 0.06 0.05 0.06 0.05 0.05 0.05 0.06 0.10
TAR (#24) 0.78 0.75 0.74 0.74 0.73 0.73 0.68 0.15
EXPAR (#24) 0.28 0.19 0.15 0.14 0.13 0.12 0.10 1.89
MAR (#24) 0.74 0.72 0.70 0.69 0.69 0.69 0.68 0.09
MSAR (#24) 0.86 0.85 0.86 0.86 0.87 0.87 0.86 0.02
GARCH (#12) 0.45 0.46 0.48 0.49 0.48 0.49 0.44 0.12
TMA (#24) 0.67 0.61 0.58 0.56 0.54 0.53 0.49 0.37
BL (#18) 1.00 1.00 1.00 0.99 0.98 0.98 0.96 0.04
RCA (#18) 0.54 0.43 0.39 0.37 0.35 0.34 0.29 0.88
NLMA (#12) 0.06 0.06 0.06 0.06 0.07 0.07 0.07 0.16
a The lag order p of an AR process is determined by an optimal lag selection

procedure discussed in Ng and Perron (2005). The n–history of BDS test is set
n = 2 for T = 200, n = 3 for T = 500, and n = 4 for T = 1000.

b “TAR (#24)” indicates that we evaluate K = 24 different parameter configura-
tions of a TAR model.

c Table reports the average rejection frequency (“avg”) calculated over K pa-
rameter configurations of a given time series model and a given distribution of
innovations. The significance level is set to α = 0.05.

d “cv(S)” denotes a coefficient of variation calculated from test statistics using
symmetric (S) innovations.

e A dark grey area in the legend denotes a moment condition failure of the test
statistic, a grey area indicates that moment condition for the test statistic is just
met, and a white (no-color) area of the legend denotes that the lowest existing
moment is still larger than the test actually requires.
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Table 10: Power properties: MLQ test

T=200 S3 S4 S5 S6 S7 S8 N cv(S)
AR (#8) 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.19
TAR (#24) 0.31 0.27 0.26 0.25 0.24 0.24 0.22 0.40
EXPAR (#24) 0.09 0.07 0.07 0.07 0.07 0.07 0.07 0.30
MAR (#24) 0.59 0.56 0.56 0.54 0.54 0.54 0.51 0.15
MSAR (#24) 0.55 0.55 0.55 0.54 0.54 0.54 0.53 0.03
GARCH (#12) 0.19 0.18 0.17 0.17 0.17 0.16 0.14 0.42
TMA (#24) 0.39 0.30 0.24 0.21 0.18 0.17 0.10 3.07
BL (#18) 0.88 0.77 0.67 0.61 0.55 0.52 0.28 2.12
RCA (#18) 0.19 0.16 0.15 0.14 0.13 0.13 0.12 0.56
NLMA (#12) 0.09 0.09 0.08 0.08 0.08 0.08 0.07 0.29

T=500 S3 S4 S5 S6 S7 S8 N cv(S)
AR (#8) 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.23
TAR (#24) 0.51 0.46 0.42 0.40 0.39 0.38 0.36 0.44
EXPAR (#24) 0.10 0.08 0.07 0.07 0.07 0.07 0.06 0.52
MAR (#24) 0.68 0.65 0.64 0.63 0.63 0.62 0.60 0.13
MSAR (#24) 0.70 0.70 0.70 0.71 0.71 0.71 0.72 0.04
GARCH (#12) 0.37 0.35 0.32 0.31 0.31 0.30 0.26 0.40
TMA (#24) 0.60 0.51 0.43 0.38 0.34 0.32 0.16 2.70
BL (#18) 1.00 0.99 0.96 0.92 0.88 0.85 0.52 0.93
RCA (#18) 0.34 0.28 0.25 0.23 0.22 0.22 0.19 0.85
NLMA (#12) 0.12 0.09 0.08 0.08 0.08 0.08 0.06 0.85

T=1000 S3 S4 S5 S6 S7 S8 N cv(S)
AR (#8) 0.07 0.06 0.07 0.07 0.06 0.06 0.06 0.31
TAR (#24) 0.66 0.61 0.56 0.53 0.51 0.50 0.45 0.46
EXPAR (#24) 0.13 0.09 0.08 0.08 0.07 0.07 0.06 0.99
MAR (#24) 0.73 0.71 0.69 0.68 0.67 0.67 0.65 0.12
MSAR (#24) 0.78 0.78 0.79 0.80 0.81 0.81 0.84 0.07
GARCH (#12) 0.57 0.55 0.52 0.51 0.49 0.49 0.44 0.30
TMA (#24) 0.70 0.62 0.56 0.52 0.48 0.45 0.26 1.73
BL (#18) 1.00 1.00 1.00 1.00 0.99 0.98 0.76 0.31
RCA (#18) 0.54 0.43 0.38 0.35 0.33 0.31 0.26 1.10
NLMA (#12) 0.15 0.11 0.09 0.09 0.08 0.08 0.06 1.44
a The lag order p of an AR process is determined by an optimal lag selection

procedure discussed in Ng and Perron (2005). The lag order m of the Q tests
is determined by an optimal selection procedure developed by Escanciano and
Lobato (2009).

b “TAR (#24)” indicates that we evaluate K = 24 different parameter configura-
tions of a TAR model.

c Table reports the average rejection frequency (“avg”) calculated over K pa-
rameter configurations of a given time series model and a given distribution of
innovations. The significance level is set to α = 0.05.

d “cv(S)” denotes a coefficient of variation calculated from test statistics using
symmetric (S) innovations.

e A dark grey area in the legend denotes a moment condition failure of the test
statistic, a grey area indicates that moment condition for the test statistic is just
met, and a white (no-color) area of the legend denotes that the lowest existing
moment is still larger than the test actually requires.
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Table 11: Power properties: MQ test

T=200 S3 S4 S5 S6 S7 S8 N cv(S)
AR (#8) 0.07 0.07 0.06 0.07 0.06 0.06 0.06 0.25
TAR (#24) 0.31 0.27 0.25 0.24 0.23 0.23 0.22 0.42
EXPAR (#24) 0.08 0.07 0.07 0.07 0.07 0.07 0.06 0.30
MAR (#24) 0.58 0.56 0.55 0.54 0.54 0.53 0.51 0.15
MSAR (#24) 0.54 0.54 0.53 0.53 0.53 0.53 0.51 0.05
GARCH (#12) 0.18 0.17 0.16 0.15 0.16 0.15 0.13 0.42
TMA (#24) 0.39 0.29 0.24 0.20 0.18 0.17 0.09 3.11
BL (#18) 0.88 0.77 0.67 0.60 0.54 0.51 0.27 2.22
RCA (#18) 0.18 0.15 0.14 0.13 0.13 0.13 0.11 0.58
NLMA (#12) 0.09 0.09 0.08 0.08 0.08 0.08 0.07 0.27

T=500 S3 S4 S5 S6 S7 S8 N cv(S)
AR (#8) 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.22
TAR (#24) 0.50 0.45 0.41 0.39 0.37 0.37 0.34 0.47
EXPAR (#24) 0.09 0.08 0.07 0.07 0.07 0.07 0.06 0.48
MAR (#24) 0.67 0.65 0.64 0.63 0.62 0.62 0.60 0.13
MSAR (#24) 0.69 0.69 0.69 0.69 0.70 0.69 0.71 0.03
GARCH (#12) 0.35 0.33 0.30 0.29 0.29 0.29 0.24 0.43
TMA (#24) 0.60 0.51 0.43 0.38 0.34 0.31 0.16 2.72
BL (#18) 1.00 0.98 0.96 0.92 0.88 0.84 0.51 0.97
RCA (#18) 0.33 0.27 0.24 0.22 0.22 0.21 0.18 0.85
NLMA (#12) 0.12 0.09 0.08 0.08 0.08 0.08 0.06 0.83

T=1000 S3 S4 S5 S6 S7 S8 N cv(S)
AR (#8) 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.31
TAR (#24) 0.65 0.60 0.55 0.52 0.50 0.49 0.44 0.48
EXPAR (#24) 0.12 0.09 0.08 0.07 0.07 0.07 0.06 1.00
MAR (#24) 0.72 0.70 0.69 0.68 0.67 0.67 0.65 0.12
MSAR (#24) 0.77 0.77 0.78 0.79 0.80 0.80 0.82 0.07
GARCH (#12) 0.55 0.53 0.50 0.49 0.47 0.46 0.42 0.32
TMA (#24) 0.70 0.62 0.56 0.52 0.48 0.45 0.25 1.73
BL (#18) 1.00 1.00 1.00 1.00 0.99 0.98 0.75 0.33
RCA (#18) 0.52 0.42 0.37 0.34 0.32 0.30 0.25 1.11
NLMA (#12) 0.15 0.11 0.09 0.09 0.08 0.08 0.06 1.42
a The lag order p of an AR process is determined by an optimal lag selection

procedure discussed in Ng and Perron (2005). The lag order m of the Q tests
is determined by an optimal selection procedure developed by Escanciano and
Lobato (2009).

b “TAR (#24)” indicates that we evaluate K = 24 different parameter configura-
tions of a TAR model.

c Table reports the average rejection frequency (“avg”) calculated over K pa-
rameter configurations of a given time series model and a given distribution of
innovations. The significance level is set to α = 0.05.

d “cv(S)” denotes a coefficient of variation calculated from test statistics using
symmetric (S) innovations.

e A dark grey area in the legend denotes a moment condition failure of the test
statistic, a grey area indicates that moment condition for the test statistic is just
met, and a white (no-color) area of the legend denotes that the lowest existing
moment is still larger than the test actually requires.
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Table 12: Power properties: KEEN test

T=200 S3 S4 S5 S6 S7 S8 N cv(S)
AR (#8) 0.04 0.04 0.05 0.04 0.05 0.04 0.04 0.10
TAR (#24) 0.51 0.52 0.51 0.52 0.52 0.51 0.50 0.04
EXPAR (#24) 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.23
MAR (#24) 0.24 0.20 0.19 0.17 0.16 0.16 0.13 0.86
MSAR (#24) 0.18 0.17 0.17 0.16 0.16 0.15 0.15 0.25
GARCH (#12) 0.10 0.09 0.08 0.08 0.08 0.07 0.06 0.57
TMA (#24) 0.51 0.49 0.50 0.49 0.49 0.48 0.47 0.09
BL (#18) 0.71 0.75 0.77 0.78 0.78 0.79 0.79 0.10
RCA (#18) 0.12 0.11 0.10 0.09 0.09 0.09 0.08 0.59
NLMA (#12) 0.07 0.07 0.06 0.07 0.07 0.07 0.05 0.38

T=500 S3 S4 S5 S6 S7 S8 N cv(S)
AR (#8) 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.18
TAR (#24) 0.63 0.64 0.64 0.64 0.65 0.65 0.65 0.03
EXPAR (#24) 0.10 0.08 0.07 0.07 0.06 0.06 0.07 0.51
MAR (#24) 0.33 0.27 0.23 0.21 0.19 0.18 0.15 1.20
MSAR (#24) 0.22 0.20 0.19 0.18 0.18 0.18 0.17 0.30
GARCH (#12) 0.16 0.14 0.11 0.10 0.10 0.09 0.07 1.31
TMA (#24) 0.53 0.53 0.53 0.52 0.52 0.52 0.51 0.04
BL (#18) 0.73 0.78 0.82 0.83 0.84 0.84 0.87 0.16
RCA (#18) 0.19 0.15 0.13 0.12 0.11 0.11 0.10 0.96
NLMA (#12) 0.10 0.09 0.08 0.08 0.08 0.08 0.05 0.80

T=1000 S3 S4 S5 S6 S7 S8 N cv(S)
AR (#8) 0.05 0.04 0.04 0.05 0.05 0.05 0.05 0.15
TAR (#24) 0.68 0.68 0.67 0.68 0.68 0.69 0.70 0.04
EXPAR (#24) 0.12 0.09 0.08 0.07 0.07 0.07 0.07 0.81
MAR (#24) 0.39 0.31 0.26 0.23 0.21 0.20 0.16 1.50
MSAR (#24) 0.25 0.23 0.22 0.21 0.21 0.21 0.20 0.26
GARCH (#12) 0.22 0.18 0.14 0.13 0.11 0.11 0.08 1.77
TMA (#24) 0.55 0.54 0.53 0.53 0.53 0.52 0.52 0.06
BL (#18) 0.73 0.78 0.81 0.83 0.84 0.85 0.85 0.15
RCA (#18) 0.25 0.18 0.16 0.13 0.13 0.12 0.10 1.39
NLMA (#12) 0.12 0.10 0.09 0.08 0.09 0.08 0.06 0.97
a The lag order p of an AR process is determined by an optimal lag selection

procedure discussed in Ng and Perron (2005).
b “TAR (#24)” indicates that we evaluate K = 24 different parameter configura-

tions of a TAR model.
c Table reports the average rejection frequency (“avg”) calculated over K pa-

rameter configurations of a given time series model and a given distribution of
innovations. The significance level is set to α = 0.05.

d “cv(S)” denotes a coefficient of variation calculated from test statistics using
symmetric (S) innovations.

e A dark grey area in the legend denotes a moment condition failure of the test
statistic, a grey area indicates that moment condition for the test statistic is just
met, and a white (no-color) area of the legend denotes that the lowest existing
moment is still larger than the test actually requires.
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Table 13: Power properties: TSAY test

T=200 S3 S4 S5 S6 S7 S8 N cv(S)
AR (#8) 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.09
TAR (#24) 0.57 0.57 0.56 0.56 0.56 0.55 0.53 0.07
EXPAR (#24) 0.08 0.07 0.06 0.06 0.06 0.06 0.06 0.29
MAR (#24) 0.28 0.22 0.20 0.19 0.18 0.17 0.14 0.95
MSAR (#24) 0.31 0.29 0.27 0.27 0.26 0.25 0.24 0.27
GARCH (#12) 0.11 0.10 0.09 0.08 0.08 0.08 0.06 0.71
TMA (#24) 0.63 0.61 0.60 0.59 0.59 0.58 0.56 0.14
BL (#18) 0.91 0.91 0.92 0.92 0.92 0.92 0.90 0.02
RCA (#18) 0.13 0.11 0.10 0.10 0.09 0.09 0.08 0.66
NLMA (#12) 0.07 0.07 0.07 0.07 0.07 0.07 0.05 0.48

T=500 S3 S4 S5 S6 S7 S8 N cv(S)
AR (#8) 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.14
TAR (#24) 0.73 0.72 0.72 0.72 0.72 0.72 0.70 0.03
EXPAR (#24) 0.10 0.08 0.07 0.07 0.07 0.07 0.07 0.56
MAR (#24) 0.37 0.29 0.25 0.22 0.21 0.20 0.16 1.34
MSAR (#24) 0.44 0.41 0.38 0.37 0.36 0.36 0.35 0.28
GARCH (#12) 0.18 0.15 0.12 0.11 0.10 0.10 0.07 1.60
TMA (#24) 0.74 0.73 0.72 0.71 0.71 0.71 0.69 0.07
BL (#18) 0.95 0.97 0.97 0.98 0.99 0.99 1.00 0.05
RCA (#18) 0.20 0.16 0.13 0.12 0.12 0.12 0.10 1.08
NLMA (#12) 0.11 0.10 0.09 0.09 0.09 0.09 0.06 0.95

T=1000 S3 S4 S5 S6 S7 S8 N cv(S)
AR (#8) 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.16
TAR (#24) 0.80 0.79 0.79 0.78 0.78 0.78 0.78 0.02
EXPAR (#24) 0.13 0.10 0.08 0.07 0.07 0.07 0.07 0.91
MAR (#24) 0.43 0.33 0.28 0.25 0.22 0.21 0.16 1.65
MSAR (#24) 0.53 0.49 0.47 0.46 0.46 0.46 0.46 0.16
GARCH (#12) 0.25 0.19 0.14 0.13 0.12 0.11 0.08 2.04
TMA (#24) 0.80 0.78 0.78 0.77 0.77 0.77 0.76 0.06
BL (#18) 0.96 0.97 0.98 0.99 0.99 0.99 1.00 0.04
RCA (#18) 0.27 0.19 0.16 0.13 0.13 0.13 0.11 1.56
NLMA (#12) 0.14 0.12 0.12 0.11 0.11 0.11 0.06 1.28
a The lag order p of an AR process is determined by an optimal lag selection

procedure discussed in Ng and Perron (2005).
b “TAR (#24)” indicates that we evaluate K = 24 different parameter configura-

tions of a TAR model.
c Table reports the average rejection frequency (“avg”) calculated over K pa-

rameter configurations of a given time series model and a given distribution of
innovations. The significance level is set to α = 0.05.

d “cv(S)” denotes a coefficient of variation calculated from test statistics using
symmetric (S) innovations.

e A dark grey area in the legend denotes a moment condition failure of the test
statistic, a grey area indicates that moment condition for the test statistic is just
met, and a white (no-color) area of the legend denotes that the lowest existing
moment is still larger than the test actually requires.
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Table 14: Power properties: STAR test

T=200 S3 S4 S5 S6 S7 S8 N cv(S)
AR (#8) 0.05 0.04 0.04 0.04 0.05 0.04 0.04 0.17
TAR (#24) 0.61 0.62 0.61 0.61 0.62 0.61 0.60 0.04
EXPAR (#24) 0.22 0.23 0.24 0.24 0.24 0.25 0.27 0.20
MAR (#24) 0.36 0.30 0.27 0.25 0.24 0.23 0.19 0.94
MSAR (#24) 0.37 0.36 0.34 0.34 0.33 0.33 0.32 0.16
GARCH (#12) 0.12 0.11 0.10 0.09 0.08 0.09 0.07 0.77
TMA (#24) 0.63 0.61 0.60 0.59 0.58 0.58 0.54 0.16
BL (#18) 0.96 0.95 0.94 0.94 0.94 0.93 0.89 0.08
RCA (#18) 0.15 0.13 0.13 0.11 0.11 0.11 0.10 0.59
NLMA (#12) 0.08 0.08 0.08 0.08 0.07 0.07 0.05 0.64

T=500 S3 S4 S5 S6 S7 S8 N cv(S)
AR (#8) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
TAR (#24) 0.78 0.78 0.78 0.78 0.78 0.77 0.77 0.02
EXPAR (#24) 0.38 0.40 0.42 0.43 0.44 0.45 0.50 0.24
MAR (#24) 0.49 0.40 0.36 0.32 0.30 0.28 0.22 1.18
MSAR (#24) 0.54 0.51 0.49 0.49 0.48 0.48 0.46 0.17
GARCH (#12) 0.21 0.18 0.15 0.13 0.12 0.12 0.08 1.72
TMA (#24) 0.77 0.75 0.74 0.73 0.73 0.73 0.71 0.10
BL (#18) 0.99 0.99 0.99 0.99 1.00 1.00 1.00 0.01
RCA (#18) 0.24 0.19 0.16 0.15 0.15 0.15 0.12 1.00
NLMA (#12) 0.12 0.11 0.10 0.09 0.09 0.09 0.06 1.06

T=1000 S3 S4 S5 S6 S7 S8 N cv(S)
AR (#8) 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.13
TAR (#24) 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.01
EXPAR (#24) 0.49 0.51 0.54 0.56 0.57 0.58 0.62 0.21
MAR (#24) 0.56 0.47 0.41 0.37 0.34 0.32 0.24 1.38
MSAR (#24) 0.64 0.61 0.60 0.60 0.60 0.59 0.59 0.08
GARCH (#12) 0.29 0.24 0.19 0.17 0.15 0.13 0.09 2.07
TMA (#24) 0.85 0.83 0.82 0.81 0.80 0.80 0.78 0.08
BL (#18) 0.99 0.99 1.00 1.00 1.00 1.00 1.00 0.01
RCA (#18) 0.34 0.25 0.21 0.19 0.17 0.16 0.14 1.55
NLMA (#12) 0.16 0.14 0.13 0.11 0.12 0.11 0.06 1.63
a The lag order p of an AR process is determined by an optimal lag selection

procedure discussed in Ng and Perron (2005).
b “TAR (#24)” indicates that we evaluate K = 24 different parameter configura-

tions of a TAR model.
c Table reports the average rejection frequency (“avg”) calculated over K pa-

rameter configurations of a given time series model and a given distribution of
innovations. The significance level is set to α = 0.05.

d “cv(S)” denotes a coefficient of variation calculated from test statistics using
symmetric (S) innovations.

e A dark grey area in the legend denotes a moment condition failure of the test
statistic, a grey area indicates that moment condition for the test statistic is just
met, and a white (no-color) area of the legend denotes that the lowest existing
moment is still larger than the test actually requires.
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Table 15: Power properties: WHITE test

T=200 S3 S4 S5 S6 S7 S8 N cv(S)
AR (#8) 0.03 0.03 0.02 0.02 0.02 0.02 0.02 1.07
TAR (#24) 0.49 0.48 0.47 0.46 0.46 0.45 0.43 0.14
EXPAR (#24) 0.11 0.11 0.12 0.11 0.11 0.12 0.13 0.15
MAR (#24) 0.33 0.27 0.24 0.22 0.20 0.20 0.16 1.10
MSAR (#24) 0.37 0.36 0.35 0.35 0.34 0.34 0.33 0.12
GARCH (#12) 0.12 0.10 0.09 0.08 0.07 0.07 0.04 1.58
TMA (#24) 0.56 0.54 0.52 0.51 0.50 0.49 0.46 0.23
BL (#18) 0.97 0.96 0.95 0.94 0.93 0.92 0.84 0.16
RCA (#18) 0.11 0.09 0.08 0.07 0.07 0.06 0.05 1.20
NLMA (#12) 0.06 0.06 0.05 0.05 0.05 0.05 0.02 1.53

T=500 S3 S4 S5 S6 S7 S8 N cv(S)
AR (#8) 0.04 0.03 0.02 0.03 0.02 0.02 0.02 0.74
TAR (#24) 0.69 0.68 0.68 0.68 0.67 0.67 0.66 0.04
EXPAR (#24) 0.24 0.26 0.28 0.29 0.30 0.30 0.36 0.32
MAR (#24) 0.49 0.41 0.35 0.33 0.30 0.28 0.21 1.33
MSAR (#24) 0.58 0.56 0.55 0.55 0.54 0.54 0.54 0.08
GARCH (#12) 0.21 0.17 0.15 0.12 0.11 0.10 0.06 2.58
TMA (#24) 0.73 0.71 0.70 0.69 0.68 0.68 0.67 0.10
BL (#18) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
RCA (#18) 0.20 0.15 0.12 0.11 0.10 0.09 0.07 1.74
NLMA (#12) 0.11 0.10 0.09 0.09 0.09 0.08 0.04 1.73

T=1000 S3 S4 S5 S6 S7 S8 N cv(S)
AR (#8) 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.48
TAR (#24) 0.78 0.78 0.77 0.77 0.77 0.77 0.77 0.01
EXPAR (#24) 0.38 0.40 0.43 0.44 0.46 0.47 0.52 0.27
MAR (#24) 0.58 0.49 0.43 0.38 0.35 0.33 0.24 1.48
MSAR (#24) 0.68 0.66 0.66 0.66 0.66 0.65 0.67 0.04
GARCH (#12) 0.30 0.25 0.19 0.17 0.15 0.13 0.07 3.21
TMA (#24) 0.81 0.80 0.79 0.78 0.78 0.77 0.77 0.06
BL (#18) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
RCA (#18) 0.31 0.21 0.16 0.14 0.13 0.12 0.08 2.80
NLMA (#12) 0.16 0.15 0.13 0.13 0.12 0.12 0.05 2.09
a The lag order p of an AR process is determined by an optimal lag selection

procedure discussed in Ng and Perron (2005).
b “TAR (#24)” indicates that we evaluate K = 24 different parameter configura-

tions of a TAR model.
c Table reports the average rejection frequency (“avg”) calculated over K pa-

rameter configurations of a given time series model and a given distribution of
innovations. The significance level is set to α = 0.05.

d “cv(S)” denotes a coefficient of variation calculated from test statistics using
symmetric (S) innovations.

e A dark grey area in the legend denotes a moment condition failure of the test
statistic, a grey area indicates that moment condition for the test statistic is just
met, and a white (no-color) area of the legend denotes that the lowest existing
moment is still larger than the test actually requires.
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Table 16: Power properties: NN test

T=200 S3 S4 S5 S6 S7 S8 N cv(S)
AR (#8) 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.23
TAR (#24) 0.63 0.63 0.62 0.62 0.62 0.62 0.60 0.06
EXPAR (#24) 0.46 0.46 0.45 0.45 0.45 0.44 0.44 0.03
MAR (#24) 0.18 0.15 0.14 0.13 0.12 0.12 0.10 0.71
MSAR (#24) 0.25 0.25 0.25 0.26 0.25 0.26 0.26 0.04
GARCH (#12) 0.10 0.09 0.08 0.08 0.07 0.08 0.06 0.60
TMA (#24) 0.59 0.57 0.56 0.55 0.55 0.54 0.51 0.15
BL (#18) 0.89 0.89 0.88 0.87 0.86 0.86 0.81 0.10
RCA (#18) 0.11 0.09 0.09 0.08 0.08 0.08 0.07 0.49
NLMA (#12) 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.31

T=500 S3 S4 S5 S6 S7 S8 N cv(S)
AR (#8) 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.24
TAR (#24) 0.83 0.82 0.82 0.81 0.81 0.81 0.80 0.03
EXPAR (#24) 0.64 0.64 0.64 0.63 0.63 0.64 0.64 0.01
MAR (#24) 0.22 0.18 0.16 0.14 0.14 0.13 0.11 0.89
MSAR (#24) 0.38 0.39 0.40 0.41 0.42 0.42 0.45 0.15
GARCH (#12) 0.14 0.12 0.11 0.10 0.09 0.09 0.07 1.09
TMA (#24) 0.70 0.68 0.66 0.65 0.65 0.65 0.62 0.12
BL (#18) 0.96 0.96 0.97 0.97 0.97 0.97 0.98 0.02
RCA (#18) 0.14 0.11 0.10 0.10 0.09 0.09 0.08 0.73
NLMA (#12) 0.06 0.06 0.06 0.06 0.06 0.07 0.05 0.25

T=1000 S3 S4 S5 S6 S7 S8 N cv(S)
AR (#8) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.07
TAR (#24) 0.93 0.93 0.92 0.92 0.92 0.92 0.92 0.01
EXPAR (#24) 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.00
MAR (#24) 0.24 0.19 0.16 0.16 0.14 0.14 0.12 1.07
MSAR (#24) 0.50 0.53 0.55 0.56 0.57 0.57 0.60 0.16
GARCH (#12) 0.18 0.15 0.12 0.11 0.10 0.09 0.08 1.37
TMA (#24) 0.75 0.73 0.71 0.70 0.69 0.69 0.66 0.13
BL (#18) 0.97 0.98 0.98 0.98 0.98 0.99 0.99 0.01
RCA (#18) 0.17 0.13 0.12 0.10 0.10 0.10 0.09 0.98
NLMA (#12) 0.07 0.07 0.07 0.07 0.07 0.07 0.05 0.51
a The lag order p of an AR process is determined by an optimal lag selection

procedure discussed in Ng and Perron (2005).
b “TAR (#24)” indicates that we evaluate K = 24 different parameter configura-

tions of a TAR model.
c Table reports the average rejection frequency (“avg”) calculated over K pa-

rameter configurations of a given time series model and a given distribution of
innovations. The significance level is set to α = 0.05.

d “cv(S)” denotes a coefficient of variation calculated from test statistics using
symmetric (S) innovations.

e A dark grey area in the legend denotes a moment condition failure of the test
statistic, a grey area indicates that moment condition for the test statistic is just
met, and a white (no-color) area of the legend denotes that the lowest existing
moment is still larger than the test actually requires.

42



Table 17: Power properties: BDS test

T=200 A1(+) A1(−) A2(+) A2(−) A3(+) A3(−) N cv(A)
AR (#8) 0.08 0.08 0.08 0.07 0.08 0.08 0.08 0.17
TAR (#24) 0.27 0.57 0.24 0.57 0.32 0.50 0.35 0.93
EXPAR (#24) 0.10 0.10 0.11 0.11 0.12 0.13 0.10 0.32
MAR (#24) 0.61 0.61 0.60 0.60 0.61 0.61 0.55 0.12
MSAR (#24) 0.65 0.61 0.63 0.60 0.63 0.60 0.59 0.09
GARCH (#12) 0.15 0.15 0.15 0.15 0.15 0.15 0.17 0.11
TMA (#24) 0.32 0.32 0.29 0.29 0.38 0.38 0.23 0.65
BL (#18) 0.72 0.76 0.66 0.69 0.78 0.80 0.47 0.70
RCA (#18) 0.16 0.25 0.15 0.23 0.17 0.22 0.15 0.69
NLMA (#12) 0.16 0.32 0.17 0.33 0.11 0.17 0.09 2.62

T=500 A1(+) A1(−) A2(+) A2(−) A3(+) A3(−) N cv(A)
AR (#8) 0.06 0.06 0.06 0.05 0.06 0.06 0.06 0.13
TAR (#24) 0.34 0.84 0.32 0.83 0.45 0.76 0.53 0.98
EXPAR (#24) 0.10 0.10 0.15 0.15 0.17 0.17 0.09 0.96
MAR (#24) 0.69 0.69 0.67 0.67 0.69 0.69 0.63 0.10
MSAR (#24) 0.83 0.75 0.82 0.74 0.79 0.75 0.76 0.11
GARCH (#12) 0.28 0.28 0.28 0.28 0.27 0.27 0.27 0.04
TMA (#24) 0.47 0.46 0.43 0.44 0.53 0.53 0.38 0.42
BL (#18) 0.96 0.97 0.92 0.94 0.97 0.98 0.76 0.29
RCA (#18) 0.26 0.44 0.23 0.40 0.29 0.39 0.21 1.14
NLMA (#12) 0.24 0.53 0.25 0.54 0.13 0.26 0.07 6.28

T=1000 A1(+) A1(−) A2(+) A2(−) A3(+) A3(−) N cv(A)
AR (#8) 0.05 0.06 0.05 0.05 0.05 0.06 0.06 0.08
TAR (#24) 0.38 0.96 0.38 0.95 0.56 0.90 0.68 0.86
EXPAR (#24) 0.13 0.13 0.21 0.21 0.24 0.24 0.10 1.49
MAR (#24) 0.73 0.73 0.72 0.71 0.73 0.73 0.68 0.08
MSAR (#24) 0.93 0.82 0.92 0.82 0.89 0.83 0.86 0.12
GARCH (#12) 0.44 0.45 0.46 0.45 0.44 0.45 0.44 0.04
TMA (#24) 0.54 0.54 0.51 0.52 0.61 0.61 0.49 0.24
BL (#18) 1.00 1.00 0.99 0.99 1.00 1.00 0.96 0.05
RCA (#18) 0.35 0.61 0.32 0.56 0.39 0.56 0.29 1.12
NLMA (#12) 0.37 0.66 0.39 0.68 0.18 0.36 0.07 8.87
a The lag order p of an AR process is determined by an optimal lag selection procedure discussed in

Ng and Perron (2005). The n–history of BDS test is set n = 2 for T = 200, n = 3 for T = 500, and
n = 4 for T = 1000.

b “TAR (#24)” indicates that we evaluate K = 24 different parameter configurations of a TAR model.
c Table reports the average rejection frequency (“avg”) calculated over K parameter configurations

of a given time series model and a given distribution of innovations. The significance level is set to
α = 0.05.

d “cv(A)” denotes a coefficient of variation calculated from test statistics using asymmetric (A) inno-
vations.

e A dark grey area in the legend denotes a moment condition failure of the test statistic, a grey area
indicates that moment condition for the test statistic is just met, and a white (no-color) area of the
legend denotes that the lowest existing moment is still larger than the test actually requires.
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Table 18: Power properties: MLQ test

T=200 A1(+) A1(−) A2(+) A2(−) A3(+) A3(−) N cv(A)
AR (#8) 0.07 0.06 0.07 0.07 0.07 0.07 0.06 0.19
TAR (#24) 0.15 0.38 0.14 0.37 0.21 0.34 0.22 1.07
EXPAR (#24) 0.07 0.07 0.08 0.08 0.08 0.08 0.07 0.25
MAR (#24) 0.56 0.57 0.56 0.56 0.57 0.57 0.51 0.12
MSAR (#24) 0.57 0.53 0.57 0.53 0.57 0.54 0.53 0.08
GARCH (#12) 0.19 0.22 0.18 0.21 0.19 0.21 0.14 0.61
TMA (#24) 0.23 0.23 0.20 0.20 0.28 0.28 0.10 1.89
BL (#18) 0.66 0.74 0.58 0.65 0.76 0.81 0.28 1.88
RCA (#18) 0.14 0.20 0.13 0.18 0.15 0.19 0.12 0.64
NLMA (#12) 0.18 0.22 0.18 0.21 0.10 0.16 0.07 2.14

T=500 A1(+) A1(−) A2(+) A2(−) A3(+) A3(−) N cv(A)
AR (#8) 0.07 0.06 0.07 0.06 0.07 0.07 0.06 0.17
TAR (#24) 0.28 0.53 0.25 0.52 0.37 0.48 0.36 0.78
EXPAR (#24) 0.07 0.07 0.08 0.08 0.09 0.09 0.06 0.39
MAR (#24) 0.66 0.66 0.64 0.65 0.66 0.67 0.60 0.11
MSAR (#24) 0.74 0.68 0.74 0.68 0.72 0.68 0.72 0.09
GARCH (#12) 0.39 0.40 0.36 0.38 0.36 0.38 0.26 0.52
TMA (#24) 0.37 0.37 0.33 0.33 0.45 0.45 0.16 1.80
BL (#18) 0.94 0.96 0.88 0.92 0.98 0.99 0.52 0.91
RCA (#18) 0.25 0.34 0.22 0.31 0.27 0.34 0.19 0.84
NLMA (#12) 0.41 0.42 0.42 0.41 0.18 0.28 0.06 5.69

T=1000 A1(+) A1(−) A2(+) A2(−) A3(+) A3(−) N cv(A)
AR (#8) 0.07 0.06 0.07 0.07 0.07 0.08 0.06 0.35
TAR (#24) 0.39 0.62 0.38 0.61 0.50 0.57 0.45 0.52
EXPAR (#24) 0.07 0.07 0.09 0.09 0.10 0.10 0.06 0.61
MAR (#24) 0.70 0.71 0.69 0.69 0.71 0.71 0.65 0.10
MSAR (#24) 0.84 0.76 0.85 0.76 0.82 0.76 0.84 0.12
GARCH (#12) 0.58 0.59 0.56 0.57 0.57 0.58 0.44 0.35
TMA (#24) 0.46 0.46 0.43 0.42 0.55 0.55 0.26 1.17
BL (#18) 1.00 1.00 0.98 0.99 1.00 1.00 0.76 0.31
RCA (#18) 0.37 0.50 0.33 0.45 0.42 0.52 0.26 1.04
NLMA (#12) 0.67 0.63 0.68 0.62 0.33 0.44 0.06 10.08
a The lag order p of an AR process is determined by an optimal lag selection procedure discussed in Ng

and Perron (2005). The lag order m of the Q tests is determined by an optimal selection procedure
developed by Escanciano and Lobato (2009).

b “TAR (#24)” indicates that we evaluate K = 24 different parameter configurations of a TAR model.
c Table reports the average rejection frequency (“avg”) calculated over K parameter configurations

of a given time series model and a given distribution of innovations. The significance level is set to
α = 0.05.

d “cv(A)” denotes a coefficient of variation calculated from test statistics using asymmetric (A) inno-
vations.

e A dark grey area in the legend denotes a moment condition failure of the test statistic, a grey area
indicates that moment condition for the test statistic is just met, and a white (no-color) area of the
legend denotes that the lowest existing moment is still larger than the test actually requires.
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Table 19: Power properties: MQ test

T=200 A1(+) A1(−) A2(+) A2(−) A3(+) A3(−) N cv(A)
AR (#8) 0.07 0.06 0.07 0.06 0.07 0.07 0.06 0.19
TAR (#24) 0.15 0.37 0.13 0.36 0.20 0.34 0.22 1.09
EXPAR (#24) 0.07 0.07 0.08 0.07 0.08 0.08 0.06 0.25
MAR (#24) 0.56 0.57 0.55 0.55 0.57 0.57 0.51 0.12
MSAR (#24) 0.56 0.52 0.55 0.52 0.55 0.53 0.51 0.08
GARCH (#12) 0.18 0.21 0.17 0.19 0.18 0.19 0.13 0.59
TMA (#24) 0.22 0.22 0.19 0.19 0.27 0.27 0.09 1.90
BL (#18) 0.66 0.73 0.57 0.65 0.76 0.80 0.27 1.94
RCA (#18) 0.14 0.18 0.13 0.17 0.15 0.18 0.11 0.64
NLMA (#12) 0.18 0.22 0.18 0.21 0.10 0.16 0.07 2.11

T=500 A1(+) A1(−) A2(+) A2(−) A3(+) A3(−) N cv(A)
AR (#8) 0.07 0.06 0.07 0.06 0.07 0.07 0.06 0.20
TAR (#24) 0.27 0.51 0.25 0.51 0.36 0.47 0.34 0.79
EXPAR (#24) 0.07 0.07 0.08 0.08 0.09 0.09 0.06 0.37
MAR (#24) 0.65 0.66 0.64 0.64 0.66 0.66 0.60 0.11
MSAR (#24) 0.72 0.67 0.73 0.67 0.71 0.68 0.71 0.08
GARCH (#12) 0.37 0.37 0.35 0.35 0.35 0.35 0.24 0.52
TMA (#24) 0.36 0.36 0.33 0.33 0.45 0.45 0.16 1.81
BL (#18) 0.94 0.96 0.87 0.92 0.98 0.99 0.51 0.95
RCA (#18) 0.24 0.32 0.21 0.30 0.26 0.33 0.18 0.86
NLMA (#12) 0.41 0.42 0.42 0.41 0.18 0.28 0.06 5.67

T=1000 A1(+) A1(−) A2(+) A2(−) A3(+) A3(−) N cv(A)
AR (#8) 0.07 0.06 0.07 0.07 0.07 0.08 0.06 0.35
TAR (#24) 0.39 0.61 0.38 0.60 0.49 0.56 0.44 0.51
EXPAR (#24) 0.07 0.07 0.09 0.09 0.10 0.10 0.06 0.62
MAR (#24) 0.70 0.70 0.68 0.69 0.71 0.71 0.65 0.10
MSAR (#24) 0.83 0.75 0.84 0.76 0.81 0.76 0.82 0.11
GARCH (#12) 0.57 0.57 0.54 0.55 0.55 0.56 0.42 0.37
TMA (#24) 0.46 0.46 0.42 0.42 0.55 0.55 0.25 1.16
BL (#18) 1.00 1.00 0.98 0.99 1.00 1.00 0.75 0.33
RCA (#18) 0.36 0.49 0.32 0.43 0.41 0.51 0.25 1.04
NLMA (#12) 0.67 0.63 0.68 0.62 0.33 0.43 0.06 10.09
a The lag order p of an AR process is determined by an optimal lag selection procedure discussed in Ng

and Perron (2005). The lag order m of the Q tests is determined by an optimal selection procedure
developed by Escanciano and Lobato (2009).

b “TAR (#24)” indicates that we evaluate K = 24 different parameter configurations of a TAR model.
c Table reports the average rejection frequency (“avg”) calculated over K parameter configurations

of a given time series model and a given distribution of innovations. The significance level is set to
α = 0.05.

d “cv(A)” denotes a coefficient of variation calculated from test statistics using asymmetric (A) inno-
vations.

e A dark grey area in the legend denotes a moment condition failure of the test statistic, a grey area
indicates that moment condition for the test statistic is just met, and a white (no-color) area of the
legend denotes that the lowest existing moment is still larger than the test actually requires.
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Table 20: Power properties: KEEN test

T=200 A1(+) A1(−) A2(+) A2(−) A3(+) A3(−) N cv(A)
AR (#8) 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.17
TAR (#24) 0.45 0.39 0.46 0.40 0.49 0.44 0.50 0.22
EXPAR (#24) 0.11 0.10 0.15 0.15 0.11 0.11 0.06 1.30
MAR (#24) 0.20 0.21 0.18 0.19 0.22 0.22 0.13 0.67
MSAR (#24) 0.17 0.17 0.17 0.17 0.18 0.17 0.15 0.20
GARCH (#12) 0.07 0.07 0.07 0.07 0.08 0.09 0.06 0.39
TMA (#24) 0.42 0.42 0.43 0.43 0.47 0.47 0.47 0.11
BL (#18) 0.63 0.61 0.66 0.63 0.69 0.65 0.79 0.23
RCA (#18) 0.10 0.11 0.09 0.10 0.11 0.12 0.08 0.54
NLMA (#12) 0.03 0.10 0.03 0.10 0.04 0.10 0.05 1.52

T=500 A1(+) A1(−) A2(+) A2(−) A3(+) A3(−) N cv(A)
AR (#8) 0.05 0.05 0.04 0.05 0.04 0.04 0.05 0.16
TAR (#24) 0.59 0.51 0.60 0.54 0.61 0.58 0.65 0.22
EXPAR (#24) 0.19 0.18 0.26 0.27 0.19 0.19 0.07 2.85
MAR (#24) 0.26 0.27 0.22 0.23 0.27 0.28 0.15 0.89
MSAR (#24) 0.21 0.21 0.19 0.20 0.20 0.20 0.17 0.22
GARCH (#12) 0.11 0.11 0.10 0.10 0.12 0.13 0.07 0.85
TMA (#24) 0.48 0.47 0.48 0.48 0.51 0.51 0.51 0.08
BL (#18) 0.61 0.60 0.64 0.60 0.67 0.62 0.87 0.31
RCA (#18) 0.13 0.14 0.12 0.13 0.15 0.16 0.10 0.70
NLMA (#12) 0.02 0.15 0.02 0.14 0.04 0.13 0.05 2.30

T=1000 A1(+) A1(−) A2(+) A2(−) A3(+) A3(−) N cv(A)
AR (#8) 0.05 0.05 0.04 0.04 0.04 0.05 0.05 0.21
TAR (#24) 0.66 0.61 0.66 0.64 0.68 0.65 0.70 0.13
EXPAR (#24) 0.27 0.27 0.36 0.36 0.29 0.29 0.07 3.98
MAR (#24) 0.29 0.30 0.25 0.26 0.32 0.33 0.16 1.15
MSAR (#24) 0.24 0.24 0.22 0.23 0.24 0.24 0.20 0.22
GARCH (#12) 0.15 0.15 0.12 0.13 0.18 0.18 0.08 1.24
TMA (#24) 0.49 0.49 0.50 0.50 0.53 0.53 0.52 0.08
BL (#18) 0.61 0.63 0.62 0.63 0.63 0.61 0.85 0.28
RCA (#18) 0.16 0.18 0.14 0.15 0.18 0.19 0.10 0.87
NLMA (#12) 0.03 0.16 0.03 0.15 0.04 0.17 0.06 2.41
a The lag order p of an AR process is determined by an optimal lag selection procedure discussed in

Ng and Perron (2005).
b “TAR (#24)” indicates that we evaluate K = 24 different parameter configurations of a TAR model.
c Table reports the average rejection frequency (“avg”) calculated over K parameter configurations

of a given time series model and a given distribution of innovations. The significance level is set to
α = 0.05.

d “cv(A)” denotes a coefficient of variation calculated from test statistics using asymmetric (A) inno-
vations.

e A dark grey area in the legend denotes a moment condition failure of the test statistic, a grey area
indicates that moment condition for the test statistic is just met, and a white (no-color) area of the
legend denotes that the lowest existing moment is still larger than the test actually requires.
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Table 21: Power properties: TSAY test

T=200 A1(+) A1(−) A2(+) A2(−) A3(+) A3(−) N cv(A)
AR (#8) 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.20
TAR (#24) 0.50 0.44 0.51 0.44 0.54 0.50 0.53 0.19
EXPAR (#24) 0.11 0.11 0.15 0.16 0.11 0.11 0.06 1.41
MAR (#24) 0.22 0.23 0.20 0.21 0.24 0.24 0.14 0.73
MSAR (#24) 0.29 0.29 0.27 0.28 0.30 0.29 0.24 0.24
GARCH (#12) 0.08 0.08 0.07 0.08 0.09 0.10 0.06 0.52
TMA (#24) 0.56 0.56 0.55 0.55 0.61 0.60 0.56 0.09
BL (#18) 0.90 0.93 0.90 0.93 0.90 0.93 0.90 0.04
RCA (#18) 0.10 0.12 0.09 0.11 0.11 0.13 0.08 0.59
NLMA (#12) 0.02 0.11 0.03 0.11 0.04 0.11 0.05 1.73

T=500 A1(+) A1(−) A2(+) A2(−) A3(+) A3(−) N cv(A)
AR (#8) 0.05 0.05 0.04 0.05 0.04 0.04 0.05 0.15
TAR (#24) 0.67 0.58 0.68 0.61 0.70 0.66 0.70 0.17
EXPAR (#24) 0.19 0.19 0.28 0.28 0.20 0.20 0.07 3.05
MAR (#24) 0.28 0.29 0.24 0.25 0.30 0.31 0.16 1.00
MSAR (#24) 0.41 0.43 0.38 0.42 0.42 0.42 0.35 0.23
GARCH (#12) 0.12 0.12 0.11 0.10 0.14 0.15 0.07 1.08
TMA (#24) 0.71 0.71 0.71 0.71 0.73 0.73 0.69 0.05
BL (#18) 0.99 0.98 0.98 0.99 0.97 0.98 1.00 0.02
RCA (#18) 0.14 0.15 0.12 0.14 0.16 0.17 0.10 0.78
NLMA (#12) 0.02 0.17 0.02 0.16 0.04 0.15 0.06 2.63

T=1000 A1(+) A1(−) A2(+) A2(−) A3(+) A3(−) N cv(A)
AR (#8) 0.05 0.05 0.04 0.04 0.05 0.05 0.05 0.19
TAR (#24) 0.75 0.70 0.76 0.72 0.78 0.75 0.78 0.10
EXPAR (#24) 0.28 0.28 0.39 0.39 0.31 0.31 0.07 4.39
MAR (#24) 0.31 0.33 0.27 0.28 0.35 0.36 0.16 1.24
MSAR (#24) 0.51 0.54 0.47 0.53 0.51 0.51 0.46 0.16
GARCH (#12) 0.16 0.16 0.13 0.13 0.19 0.19 0.08 1.41
TMA (#24) 0.78 0.78 0.78 0.78 0.79 0.79 0.76 0.05
BL (#18) 0.99 0.99 1.00 0.99 0.99 0.98 1.00 0.02
RCA (#18) 0.16 0.19 0.14 0.15 0.19 0.21 0.11 0.97
NLMA (#12) 0.03 0.21 0.03 0.19 0.05 0.21 0.06 2.87
a The lag order p of an AR process is determined by an optimal lag selection procedure discussed in

Ng and Perron (2005).
b “TAR (#24)” indicates that we evaluate K = 24 different parameter configurations of a TAR model.
c Table reports the average rejection frequency (“avg”) calculated over K parameter configurations

of a given time series model and a given distribution of innovations. The significance level is set to
α = 0.05.

d “cv(A)” denotes a coefficient of variation calculated from test statistics using asymmetric (A) inno-
vations.

e A dark grey area in the legend denotes a moment condition failure of the test statistic, a grey area
indicates that moment condition for the test statistic is just met, and a white (no-color) area of the
legend denotes that the lowest existing moment is still larger than the test actually requires.
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Table 22: Power properties: STAR test

T=200 A1(+) A1(−) A2(+) A2(−) A3(+) A3(−) N cv(A)
AR (#8) 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.15
TAR (#24) 0.56 0.49 0.58 0.50 0.59 0.56 0.60 0.17
EXPAR (#24) 0.24 0.24 0.23 0.24 0.22 0.22 0.27 0.20
MAR (#24) 0.29 0.31 0.26 0.28 0.31 0.32 0.19 0.71
MSAR (#24) 0.35 0.35 0.34 0.34 0.36 0.36 0.32 0.14
GARCH (#12) 0.09 0.09 0.08 0.08 0.10 0.11 0.07 0.57
TMA (#24) 0.55 0.55 0.54 0.54 0.60 0.59 0.54 0.10
BL (#18) 0.94 0.96 0.93 0.95 0.95 0.97 0.89 0.09
RCA (#18) 0.12 0.14 0.11 0.12 0.13 0.14 0.10 0.47
NLMA (#12) 0.03 0.12 0.03 0.12 0.05 0.11 0.05 1.82

T=500 A1(+) A1(−) A2(+) A2(−) A3(+) A3(−) N cv(A)
AR (#8) 0.05 0.05 0.04 0.04 0.05 0.05 0.05 0.18
TAR (#24) 0.74 0.68 0.75 0.71 0.76 0.74 0.77 0.11
EXPAR (#24) 0.45 0.45 0.42 0.42 0.38 0.38 0.50 0.25
MAR (#24) 0.38 0.39 0.33 0.35 0.41 0.42 0.22 0.88
MSAR (#24) 0.52 0.51 0.50 0.50 0.53 0.50 0.46 0.14
GARCH (#12) 0.14 0.14 0.12 0.12 0.16 0.17 0.08 1.19
TMA (#24) 0.71 0.72 0.71 0.71 0.74 0.74 0.71 0.06
BL (#18) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
RCA (#18) 0.17 0.18 0.15 0.17 0.19 0.21 0.12 0.71
NLMA (#12) 0.03 0.19 0.03 0.17 0.05 0.16 0.06 2.70

T=1000 A1(+) A1(−) A2(+) A2(−) A3(+) A3(−) N cv(A)
AR (#8) 0.05 0.05 0.04 0.04 0.05 0.05 0.05 0.18
TAR (#24) 0.83 0.80 0.83 0.81 0.84 0.83 0.86 0.08
EXPAR (#24) 0.58 0.59 0.55 0.55 0.50 0.50 0.62 0.20
MAR (#24) 0.43 0.44 0.37 0.39 0.47 0.48 0.24 1.04
MSAR (#24) 0.63 0.62 0.62 0.62 0.63 0.60 0.59 0.07
GARCH (#12) 0.19 0.19 0.16 0.16 0.23 0.23 0.09 1.47
TMA (#24) 0.79 0.80 0.80 0.80 0.82 0.82 0.78 0.05
BL (#18) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
RCA (#18) 0.22 0.24 0.18 0.20 0.25 0.26 0.14 0.95
NLMA (#12) 0.03 0.24 0.04 0.22 0.06 0.22 0.06 3.45
a The lag order p of an AR process is determined by an optimal lag selection procedure discussed in

Ng and Perron (2005).
b “TAR (#24)” indicates that we evaluate K = 24 different parameter configurations of a TAR model.
c Table reports the average rejection frequency (“avg”) calculated over K parameter configurations

of a given time series model and a given distribution of innovations. The significance level is set to
α = 0.05.

d “cv(A)” denotes a coefficient of variation calculated from test statistics using asymmetric (A) inno-
vations.

e A dark grey area in the legend denotes a moment condition failure of the test statistic, a grey area
indicates that moment condition for the test statistic is just met, and a white (no-color) area of the
legend denotes that the lowest existing moment is still larger than the test actually requires.
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Table 23: Power properties: WHITE test

T=200 A1(+) A1(−) A2(+) A2(−) A3(+) A3(−) N cv(A)
AR (#8) 0.02 0.02 0.02 0.02 0.03 0.03 0.02 0.85
TAR (#24) 0.40 0.38 0.41 0.39 0.45 0.43 0.43 0.15
EXPAR (#24) 0.11 0.11 0.11 0.12 0.11 0.11 0.13 0.17
MAR (#24) 0.26 0.28 0.22 0.25 0.28 0.29 0.16 0.88
MSAR (#24) 0.36 0.37 0.36 0.35 0.37 0.37 0.33 0.12
GARCH (#12) 0.09 0.09 0.07 0.08 0.10 0.10 0.04 1.24
TMA (#24) 0.45 0.45 0.44 0.45 0.51 0.51 0.46 0.14
BL (#18) 0.93 0.93 0.92 0.92 0.96 0.96 0.84 0.15
RCA (#18) 0.08 0.10 0.07 0.08 0.09 0.10 0.05 1.04
NLMA (#12) 0.02 0.10 0.02 0.09 0.03 0.09 0.02 3.51

T=500 A1(+) A1(−) A2(+) A2(−) A3(+) A3(−) N rc(A)
AR (#8) 0.02 0.02 0.03 0.03 0.03 0.03 0.02 0.69
TAR (#24) 0.61 0.57 0.62 0.59 0.65 0.65 0.66 0.14
EXPAR (#24) 0.30 0.30 0.29 0.29 0.25 0.24 0.36 0.32
MAR (#24) 0.39 0.41 0.34 0.37 0.41 0.44 0.21 1.08
MSAR (#24) 0.57 0.56 0.57 0.55 0.57 0.56 0.54 0.07
GARCH (#12) 0.15 0.15 0.12 0.13 0.16 0.17 0.06 1.85
TMA (#24) 0.66 0.66 0.65 0.66 0.69 0.69 0.67 0.06
BL (#18) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
RCA (#18) 0.13 0.15 0.11 0.13 0.15 0.17 0.07 1.27
NLMA (#12) 0.02 0.18 0.02 0.17 0.04 0.16 0.04 4.10

T=1000 A1(+) A1(−) A2(+) A2(−) A3(+) A3(−) N cv(A)
AR (#8) 0.02 0.02 0.03 0.03 0.03 0.03 0.02 0.56
TAR (#24) 0.72 0.71 0.73 0.73 0.75 0.76 0.77 0.08
EXPAR (#24) 0.48 0.48 0.46 0.46 0.39 0.39 0.52 0.25
MAR (#24) 0.45 0.48 0.40 0.42 0.50 0.51 0.24 1.18
MSAR (#24) 0.70 0.67 0.70 0.66 0.69 0.66 0.67 0.06
GARCH (#12) 0.20 0.20 0.16 0.16 0.24 0.24 0.07 2.46
TMA (#24) 0.75 0.75 0.75 0.75 0.78 0.78 0.77 0.04
BL (#18) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
RCA (#18) 0.17 0.20 0.14 0.16 0.21 0.23 0.08 1.87
NLMA (#12) 0.03 0.26 0.03 0.24 0.06 0.24 0.05 4.37
a The lag order p of an AR process is determined by an optimal lag selection procedure discussed in

Ng and Perron (2005).
b “TAR (#24)” indicates that we evaluate K = 24 different parameter configurations of a TAR model.
c Table reports the average rejection frequency (“avg”) calculated over K parameter configurations

of a given time series model and a given distribution of innovations. The significance level is set to
α = 0.05.

d “cv(A)” denotes a coefficient of variation calculated from test statistics using asymmetric (A) inno-
vations.

e A dark grey area in the legend denotes a moment condition failure of the test statistic, a grey area
indicates that moment condition for the test statistic is just met, and a white (no-color) area of the
legend denotes that the lowest existing moment is still larger than the test actually requires.
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Table 24: Power properties: NN test

T=200 A1(+) A1(−) A2(+) A2(−) A3(+) A3(−) N cv(A)
AR (#8) 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.15
TAR (#24) 0.59 0.54 0.59 0.54 0.61 0.60 0.60 0.12
EXPAR (#24) 0.45 0.45 0.46 0.46 0.46 0.46 0.44 0.03
MAR (#24) 0.14 0.15 0.13 0.14 0.16 0.16 0.10 0.49
MSAR (#24) 0.26 0.26 0.25 0.25 0.25 0.25 0.26 0.05
GARCH (#12) 0.07 0.07 0.07 0.07 0.09 0.08 0.06 0.43
TMA (#24) 0.51 0.51 0.50 0.51 0.55 0.55 0.51 0.10
BL (#18) 0.83 0.82 0.83 0.82 0.87 0.86 0.81 0.08
RCA (#18) 0.09 0.09 0.08 0.08 0.09 0.10 0.07 0.33
NLMA (#12) 0.04 0.07 0.05 0.07 0.05 0.07 0.05 0.65

T=500 A1(+) A1(−) A2(+) A2(−) A3(+) A3(−) N cv(A)
AR (#8) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.12
TAR (#24) 0.79 0.78 0.79 0.78 0.81 0.80 0.80 0.04
EXPAR (#24) 0.63 0.63 0.63 0.63 0.63 0.63 0.64 0.02
MAR (#24) 0.17 0.17 0.14 0.15 0.17 0.18 0.11 0.56
MSAR (#24) 0.41 0.41 0.41 0.42 0.40 0.39 0.45 0.12
GARCH (#12) 0.11 0.10 0.09 0.09 0.12 0.12 0.07 0.76
TMA (#24) 0.64 0.64 0.63 0.63 0.67 0.67 0.62 0.08
BL (#18) 0.94 0.92 0.95 0.92 0.96 0.93 0.98 0.06
RCA (#18) 0.10 0.11 0.10 0.10 0.11 0.12 0.08 0.45
NLMA (#12) 0.04 0.09 0.04 0.09 0.05 0.08 0.05 0.99

T=1000 A1(+) A1(−) A2(+) A2(−) A3(+) A3(−) N cv(A)
AR (#8) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.14
TAR (#24) 0.90 0.90 0.91 0.90 0.92 0.92 0.92 0.02
EXPAR (#24) 0.71 0.71 0.71 0.72 0.71 0.71 0.71 0.01
MAR (#24) 0.17 0.17 0.15 0.16 0.19 0.19 0.12 0.61
MSAR (#24) 0.54 0.55 0.55 0.57 0.53 0.52 0.60 0.13
GARCH (#12) 0.13 0.12 0.11 0.10 0.15 0.14 0.08 0.91
TMA (#24) 0.70 0.69 0.69 0.69 0.72 0.72 0.66 0.09
BL (#18) 0.97 0.94 0.97 0.95 0.97 0.95 0.99 0.04
RCA (#18) 0.11 0.12 0.11 0.11 0.13 0.13 0.09 0.54
NLMA (#12) 0.05 0.10 0.05 0.11 0.05 0.09 0.05 1.22
a The lag order p of an AR process is determined by an optimal lag selection procedure discussed in

Ng and Perron (2005).
b “TAR (#24)” indicates that we evaluate K = 24 different parameter configurations of a TAR model.
c Table reports the average rejection frequency (“avg”) calculated over K parameter configurations

of a given time series model and a given distribution of innovations. The significance level is set to
α = 0.05.

d “cv(A)” denotes a coefficient of variation calculated from test statistics using asymmetric (A) inno-
vations.

e A dark grey area in the legend denotes a moment condition failure of the test statistic, a grey area
indicates that moment condition for the test statistic is just met, and a white (no-color) area of the
legend denotes that the lowest existing moment is still larger than the test actually requires.
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Table 25: Ordering of non-linearity test: T = 1000

BDS MLQ MQ KEEN
avg(N) cv(N) cv(S) cv(A) avg(N) cv(N) cv(S) cv(A) avg(N) cv(N) cv(S) cv(A) avg(N) cv(N) cv(S) cv(A)

TAR 6 6 6 8 7 7 7 7 8 8 8 6 5 5 5 5
EXPAR 4 6 8 6 7 2 5 4 8 1 6 5 6 7 4 7
MAR 1 2 1 1 2 4 3 2 3 3 2 3 7 5 7 7
MSAR 1 1 1 7 2 2 3 6 3 3 2 5 8 8 8 4
GARCH 1 6 1 1 2 7 2 2 3 8 3 3 6 3 5 5
TMA 6 6 6 6 7 7 7 8 8 8 8 7 5 5 2 5
BL 5 4 4 3 7 6 5 5 8 7 6 6 6 8 8 7
RCAR 1 5 1 7 2 6 3 6 3 7 4 5 6 3 5 2
NLMA 1 6 1 8 3 1 8 6 4 2 7 7 6 3 3 2
median 1 6 1 6 3 6 5 6 4 7 6 5 6 5 5 5

TSAY STAR WHITE NN
avg(N) cv(N) cv(S) cv(A) avg(N) cv(N) cv(S) cv(A) avg(N) cv(N) cv(S) cv(A) avg(N) cv(N) cv(S) cv(A)

TAR 3 4 4 4 2 2 1 2 4 3 2 3 1 1 3 1
EXPAR 5 8 7 8 2 4 2 2 3 5 3 3 1 3 1 1
MAR 6 6 8 8 4 7 5 5 5 8 6 6 8 1 4 4
MSAR 7 7 7 8 6 5 5 1 4 4 4 2 5 6 6 3
GARCH 5 4 7 6 4 2 6 7 8 5 8 8 7 1 4 4
TMA 3 3 1 1 1 2 4 2 2 1 3 3 4 4 5 4
BL 3 3 7 4 2 2 2 2 1 1 1 1 4 5 3 8
RCAR 5 2 7 4 4 4 6 3 8 8 8 8 7 1 2 1
NLMA 2 5 4 3 5 7 6 4 7 8 5 5 8 4 2 1
median 5 4 7 4 4 4 5 2 4 5 4 3 5 3 3 3
a “avg(N)” stands for the average rejection frequency of the non-linearity tests based on Gaussian innovations and all parameter configurations for a given non-linear

model, “cv(N)” stands for the coefficient of variation of a given test statistic over all parameter configurations of a given non-linear model using Gaussian (N)
innovations, “cv(S)” stands for a coefficient of variation of a given test statistic over all symmetric (S) innovations, “cv(A)” stands for a coefficient of variation of a
given test statistic over all asymmetric (A) innovations.

b “median” represents a median ordering using individual results about ordering for all non-linear models.



B Appendix B: Figures
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Figure 7: Power images of non-linearity tests: part 1
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Note: the x axes denotes the number of parameter configurations K of a given time series model and
the y axes denotes the number of repetitions R.
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Figure 8: Power images of non-linearity tests: part 2
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Note: the x axes denotes the number of parameter configurations K of a given time series model and
the y axes denotes the number of repetitions R.
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